File size: 6,276 Bytes
00db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d2973
 
 
 
 
 
 
 
 
 
 
 
 
 
00db68b
 
 
 
 
 
 
 
 
14d2973
00db68b
 
 
 
 
 
 
 
47fa4d3
00db68b
 
 
 
 
 
14d2973
 
00db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d2973
 
 
 
 
 
00db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d2973
 
00db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import io
import gc
import base64
import torch
import gradio as gr
import tempfile
import hashlib
import os

from fastapi import FastAPI
from io import BytesIO
from PIL import Image

# Function to encode a file to Base64
def encode_file_to_base64(file_path):
    with open(file_path, "rb") as file:
        # Encode the data to Base64
        file_base64 = base64.b64encode(file.read())
        return file_base64

def update_edition_api(_: gr.Blocks, app: FastAPI, controller):
    @app.post("/cogvideox_fun/update_edition")
    def _update_edition_api(
        datas: dict,
    ):
        edition = datas.get('edition', 'v2')

        try:
            controller.update_edition(
                edition
            )
            comment = "Success"
        except Exception as e:
            torch.cuda.empty_cache()
            comment = f"Error. error information is {str(e)}"

        return {"message": comment}

def update_diffusion_transformer_api(_: gr.Blocks, app: FastAPI, controller):
    @app.post("/cogvideox_fun/update_diffusion_transformer")
    def _update_diffusion_transformer_api(
        datas: dict,
    ):
        diffusion_transformer_path = datas.get('diffusion_transformer_path', 'none')

        try:
            controller.update_diffusion_transformer(
                diffusion_transformer_path
            )
            comment = "Success"
        except Exception as e:
            torch.cuda.empty_cache()
            comment = f"Error. error information is {str(e)}"

        return {"message": comment}

def save_base64_video(base64_string):
    video_data = base64.b64decode(base64_string)

    md5_hash = hashlib.md5(video_data).hexdigest()
    filename = f"{md5_hash}.mp4"  
    
    temp_dir = tempfile.gettempdir()
    file_path = os.path.join(temp_dir, filename)

    with open(file_path, 'wb') as video_file:
        video_file.write(video_data)

    return file_path

def save_base64_image(base64_string):
    video_data = base64.b64decode(base64_string)

    md5_hash = hashlib.md5(video_data).hexdigest()
    filename = f"{md5_hash}.jpg"  
    
    temp_dir = tempfile.gettempdir()
    file_path = os.path.join(temp_dir, filename)

    with open(file_path, 'wb') as video_file:
        video_file.write(video_data)

    return file_path

def infer_forward_api(_: gr.Blocks, app: FastAPI, controller):
    @app.post("/cogvideox_fun/infer_forward")
    def _infer_forward_api(
        datas: dict,
    ):
        base_model_path = datas.get('base_model_path', 'none')
        lora_model_path = datas.get('lora_model_path', 'none')
        lora_alpha_slider = datas.get('lora_alpha_slider', 0.55)
        prompt_textbox = datas.get('prompt_textbox', None)
        negative_prompt_textbox = datas.get('negative_prompt_textbox', 'The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. ')
        sampler_dropdown = datas.get('sampler_dropdown', 'Euler')
        sample_step_slider = datas.get('sample_step_slider', 30)
        resize_method = datas.get('resize_method', "Generate by")
        width_slider = datas.get('width_slider', 672)
        height_slider = datas.get('height_slider', 384)
        base_resolution = datas.get('base_resolution', 512)
        is_image = datas.get('is_image', False)
        generation_method = datas.get('generation_method', False)
        length_slider = datas.get('length_slider', 239)
        overlap_video_length = datas.get('overlap_video_length', 4)
        partial_video_length = datas.get('partial_video_length', 72)
        cfg_scale_slider = datas.get('cfg_scale_slider', 6)
        start_image = datas.get('start_image', None)
        end_image = datas.get('end_image', None)
        validation_video = datas.get('validation_video', None)
        validation_video_mask = datas.get('validation_video_mask', None)
        control_video = datas.get('control_video', None)
        denoise_strength = datas.get('denoise_strength', 0.70)
        seed_textbox = datas.get("seed_textbox", 43)

        generation_method = "Image Generation" if is_image else generation_method

        if start_image is not None:
            start_image = base64.b64decode(start_image)
            start_image = [Image.open(BytesIO(start_image))]
        
        if end_image is not None:
            end_image = base64.b64decode(end_image)
            end_image = [Image.open(BytesIO(end_image))]

        if validation_video is not None:
            validation_video = save_base64_video(validation_video)

        if validation_video_mask is not None:
            validation_video_mask = save_base64_image(validation_video_mask)

        if control_video is not None:
            control_video = save_base64_video(control_video)
        
        try:
            save_sample_path, comment = controller.generate(
                "",
                base_model_path,
                lora_model_path, 
                lora_alpha_slider,
                prompt_textbox, 
                negative_prompt_textbox, 
                sampler_dropdown, 
                sample_step_slider, 
                resize_method,
                width_slider, 
                height_slider, 
                base_resolution,
                generation_method,
                length_slider, 
                overlap_video_length, 
                partial_video_length, 
                cfg_scale_slider, 
                start_image,
                end_image,
                validation_video,
                validation_video_mask, 
                control_video, 
                denoise_strength,
                seed_textbox,
                is_api = True,
            )
        except Exception as e:
            gc.collect()
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
            save_sample_path = ""
            comment = f"Error. error information is {str(e)}"
            return {"message": comment}
        
        if save_sample_path != "":
            return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)}
        else:
            return {"message": comment, "save_sample_path": save_sample_path}