|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import os |
|
import json |
|
import torch |
|
import glob |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import is_torch_version, logging |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from diffusers.models.attention import Attention, FeedForward |
|
from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 |
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class CogVideoXPatchEmbed(nn.Module): |
|
def __init__( |
|
self, |
|
patch_size: int = 2, |
|
in_channels: int = 16, |
|
embed_dim: int = 1920, |
|
text_embed_dim: int = 4096, |
|
bias: bool = True, |
|
) -> None: |
|
super().__init__() |
|
self.patch_size = patch_size |
|
|
|
self.proj = nn.Conv2d( |
|
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias |
|
) |
|
self.text_proj = nn.Linear(text_embed_dim, embed_dim) |
|
|
|
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): |
|
r""" |
|
Args: |
|
text_embeds (`torch.Tensor`): |
|
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). |
|
image_embeds (`torch.Tensor`): |
|
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). |
|
""" |
|
text_embeds = self.text_proj(text_embeds) |
|
|
|
batch, num_frames, channels, height, width = image_embeds.shape |
|
image_embeds = image_embeds.reshape(-1, channels, height, width) |
|
image_embeds = self.proj(image_embeds) |
|
image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) |
|
image_embeds = image_embeds.flatten(3).transpose(2, 3) |
|
image_embeds = image_embeds.flatten(1, 2) |
|
|
|
embeds = torch.cat( |
|
[text_embeds, image_embeds], dim=1 |
|
).contiguous() |
|
return embeds |
|
|
|
@maybe_allow_in_graph |
|
class CogVideoXBlock(nn.Module): |
|
r""" |
|
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. |
|
|
|
Parameters: |
|
dim (`int`): |
|
The number of channels in the input and output. |
|
num_attention_heads (`int`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): |
|
The number of channels in each head. |
|
time_embed_dim (`int`): |
|
The number of channels in timestep embedding. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to be used in feed-forward. |
|
attention_bias (`bool`, defaults to `False`): |
|
Whether or not to use bias in attention projection layers. |
|
qk_norm (`bool`, defaults to `True`): |
|
Whether or not to use normalization after query and key projections in Attention. |
|
norm_elementwise_affine (`bool`, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_eps (`float`, defaults to `1e-5`): |
|
Epsilon value for normalization layers. |
|
final_dropout (`bool` defaults to `False`): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
ff_inner_dim (`int`, *optional*, defaults to `None`): |
|
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. |
|
ff_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in Feed-forward layer. |
|
attention_out_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in Attention output projection layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
time_embed_dim: int, |
|
dropout: float = 0.0, |
|
activation_fn: str = "gelu-approximate", |
|
attention_bias: bool = False, |
|
qk_norm: bool = True, |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = True, |
|
ff_inner_dim: Optional[int] = None, |
|
ff_bias: bool = True, |
|
attention_out_bias: bool = True, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
dim_head=attention_head_dim, |
|
heads=num_attention_heads, |
|
qk_norm="layer_norm" if qk_norm else None, |
|
eps=1e-6, |
|
bias=attention_bias, |
|
out_bias=attention_out_bias, |
|
processor=CogVideoXAttnProcessor2_0(), |
|
) |
|
|
|
|
|
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
inner_dim=ff_inner_dim, |
|
bias=ff_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
temb: torch.Tensor, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
text_seq_length = encoder_hidden_states.size(1) |
|
|
|
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( |
|
hidden_states, encoder_hidden_states, temb |
|
) |
|
|
|
|
|
attn_hidden_states, attn_encoder_hidden_states = self.attn1( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
hidden_states = hidden_states + gate_msa * attn_hidden_states |
|
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states |
|
|
|
|
|
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( |
|
hidden_states, encoder_hidden_states, temb |
|
) |
|
|
|
|
|
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) |
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] |
|
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
|
|
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin): |
|
""" |
|
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). |
|
|
|
Parameters: |
|
num_attention_heads (`int`, defaults to `30`): |
|
The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, defaults to `64`): |
|
The number of channels in each head. |
|
in_channels (`int`, defaults to `16`): |
|
The number of channels in the input. |
|
out_channels (`int`, *optional*, defaults to `16`): |
|
The number of channels in the output. |
|
flip_sin_to_cos (`bool`, defaults to `True`): |
|
Whether to flip the sin to cos in the time embedding. |
|
time_embed_dim (`int`, defaults to `512`): |
|
Output dimension of timestep embeddings. |
|
text_embed_dim (`int`, defaults to `4096`): |
|
Input dimension of text embeddings from the text encoder. |
|
num_layers (`int`, defaults to `30`): |
|
The number of layers of Transformer blocks to use. |
|
dropout (`float`, defaults to `0.0`): |
|
The dropout probability to use. |
|
attention_bias (`bool`, defaults to `True`): |
|
Whether or not to use bias in the attention projection layers. |
|
sample_width (`int`, defaults to `90`): |
|
The width of the input latents. |
|
sample_height (`int`, defaults to `60`): |
|
The height of the input latents. |
|
sample_frames (`int`, defaults to `49`): |
|
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 |
|
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, |
|
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with |
|
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). |
|
patch_size (`int`, defaults to `2`): |
|
The size of the patches to use in the patch embedding layer. |
|
temporal_compression_ratio (`int`, defaults to `4`): |
|
The compression ratio across the temporal dimension. See documentation for `sample_frames`. |
|
max_text_seq_length (`int`, defaults to `226`): |
|
The maximum sequence length of the input text embeddings. |
|
activation_fn (`str`, defaults to `"gelu-approximate"`): |
|
Activation function to use in feed-forward. |
|
timestep_activation_fn (`str`, defaults to `"silu"`): |
|
Activation function to use when generating the timestep embeddings. |
|
norm_elementwise_affine (`bool`, defaults to `True`): |
|
Whether or not to use elementwise affine in normalization layers. |
|
norm_eps (`float`, defaults to `1e-5`): |
|
The epsilon value to use in normalization layers. |
|
spatial_interpolation_scale (`float`, defaults to `1.875`): |
|
Scaling factor to apply in 3D positional embeddings across spatial dimensions. |
|
temporal_interpolation_scale (`float`, defaults to `1.0`): |
|
Scaling factor to apply in 3D positional embeddings across temporal dimensions. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 30, |
|
attention_head_dim: int = 64, |
|
in_channels: int = 16, |
|
out_channels: Optional[int] = 16, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
time_embed_dim: int = 512, |
|
text_embed_dim: int = 4096, |
|
num_layers: int = 30, |
|
dropout: float = 0.0, |
|
attention_bias: bool = True, |
|
sample_width: int = 90, |
|
sample_height: int = 60, |
|
sample_frames: int = 49, |
|
patch_size: int = 2, |
|
temporal_compression_ratio: int = 4, |
|
max_text_seq_length: int = 226, |
|
activation_fn: str = "gelu-approximate", |
|
timestep_activation_fn: str = "silu", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
spatial_interpolation_scale: float = 1.875, |
|
temporal_interpolation_scale: float = 1.0, |
|
use_rotary_positional_embeddings: bool = False, |
|
add_noise_in_inpaint_model: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
post_patch_height = sample_height // patch_size |
|
post_patch_width = sample_width // patch_size |
|
post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1 |
|
self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames |
|
self.post_patch_height = post_patch_height |
|
self.post_patch_width = post_patch_width |
|
self.post_time_compression_frames = post_time_compression_frames |
|
self.patch_size = patch_size |
|
|
|
|
|
self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True) |
|
self.embedding_dropout = nn.Dropout(dropout) |
|
|
|
|
|
spatial_pos_embedding = get_3d_sincos_pos_embed( |
|
inner_dim, |
|
(post_patch_width, post_patch_height), |
|
post_time_compression_frames, |
|
spatial_interpolation_scale, |
|
temporal_interpolation_scale, |
|
) |
|
spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1) |
|
pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False) |
|
pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding) |
|
self.register_buffer("pos_embedding", pos_embedding, persistent=False) |
|
|
|
|
|
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) |
|
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
CogVideoXBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
time_embed_dim=time_embed_dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) |
|
|
|
|
|
self.norm_out = AdaLayerNorm( |
|
embedding_dim=time_embed_dim, |
|
output_dim=2 * inner_dim, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
chunk_dim=1, |
|
) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor() |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) |
|
are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
timestep: Union[int, float, torch.LongTensor], |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
inpaint_latents: Optional[torch.Tensor] = None, |
|
control_latents: Optional[torch.Tensor] = None, |
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
return_dict: bool = True, |
|
): |
|
batch_size, num_frames, channels, height, width = hidden_states.shape |
|
|
|
|
|
timesteps = timestep |
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=hidden_states.dtype) |
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
|
|
if inpaint_latents is not None: |
|
hidden_states = torch.concat([hidden_states, inpaint_latents], 2) |
|
if control_latents is not None: |
|
hidden_states = torch.concat([hidden_states, control_latents], 2) |
|
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) |
|
|
|
|
|
text_seq_length = encoder_hidden_states.shape[1] |
|
if not self.config.use_rotary_positional_embeddings: |
|
seq_length = height * width * num_frames // (self.config.patch_size**2) |
|
|
|
pos_embeds = self.pos_embedding |
|
emb_size = hidden_states.size()[-1] |
|
pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size) |
|
pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3]) |
|
pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False) |
|
pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size) |
|
pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1) |
|
pos_embeds = pos_embeds[:, : text_seq_length + seq_length] |
|
hidden_states = hidden_states + pos_embeds |
|
hidden_states = self.embedding_dropout(hidden_states) |
|
|
|
encoder_hidden_states = hidden_states[:, :text_seq_length] |
|
hidden_states = hidden_states[:, text_seq_length:] |
|
|
|
|
|
for i, block in enumerate(self.transformer_blocks): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
emb, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
hidden_states, encoder_hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
temb=emb, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
if not self.config.use_rotary_positional_embeddings: |
|
|
|
hidden_states = self.norm_final(hidden_states) |
|
else: |
|
|
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
hidden_states = self.norm_final(hidden_states) |
|
hidden_states = hidden_states[:, text_seq_length:] |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb=emb) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
p = self.config.patch_size |
|
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p) |
|
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) |
|
|
|
if not return_dict: |
|
return (output,) |
|
return Transformer2DModelOutput(sample=output) |
|
|
|
@classmethod |
|
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}): |
|
if subfolder is not None: |
|
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) |
|
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") |
|
|
|
config_file = os.path.join(pretrained_model_path, 'config.json') |
|
if not os.path.isfile(config_file): |
|
raise RuntimeError(f"{config_file} does not exist") |
|
with open(config_file, "r") as f: |
|
config = json.load(f) |
|
|
|
from diffusers.utils import WEIGHTS_NAME |
|
model = cls.from_config(config, **transformer_additional_kwargs) |
|
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) |
|
model_file_safetensors = model_file.replace(".bin", ".safetensors") |
|
if os.path.exists(model_file): |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
elif os.path.exists(model_file_safetensors): |
|
from safetensors.torch import load_file, safe_open |
|
state_dict = load_file(model_file_safetensors) |
|
else: |
|
from safetensors.torch import load_file, safe_open |
|
model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) |
|
state_dict = {} |
|
for model_file_safetensors in model_files_safetensors: |
|
_state_dict = load_file(model_file_safetensors) |
|
for key in _state_dict: |
|
state_dict[key] = _state_dict[key] |
|
|
|
if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size(): |
|
new_shape = model.state_dict()['patch_embed.proj.weight'].size() |
|
if len(new_shape) == 5: |
|
state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() |
|
state_dict['patch_embed.proj.weight'][:, :, :-1] = 0 |
|
else: |
|
if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]: |
|
model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight'] |
|
model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0 |
|
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] |
|
else: |
|
model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :] |
|
state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] |
|
|
|
tmp_state_dict = {} |
|
for key in state_dict: |
|
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): |
|
tmp_state_dict[key] = state_dict[key] |
|
else: |
|
print(key, "Size don't match, skip") |
|
state_dict = tmp_state_dict |
|
|
|
m, u = model.load_state_dict(state_dict, strict=False) |
|
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") |
|
print(m) |
|
|
|
params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] |
|
print(f"### Mamba Parameters: {sum(params) / 1e6} M") |
|
|
|
params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] |
|
print(f"### attn1 Parameters: {sum(params) / 1e6} M") |
|
|
|
return model |