Spaces:
Sleeping
Sleeping
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Mihakram/AraT5-base-question-generation")
|
4 |
+
tokenizer = AutoTokenizer.from_pretrained("Mihakram/AraT5-base-question-generation")
|
5 |
+
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
def generate__questions(context,answer):
|
9 |
+
text="context: " +context + " " + "answer: " + answer + " </s>"
|
10 |
+
text_encoding = tokenizer.encode_plus(
|
11 |
+
text,return_tensors="pt"
|
12 |
+
)
|
13 |
+
model.eval()
|
14 |
+
generated_ids = model.generate(
|
15 |
+
input_ids=text_encoding['input_ids'],
|
16 |
+
attention_mask=text_encoding['attention_mask'],
|
17 |
+
max_length=64,
|
18 |
+
num_beams=5,
|
19 |
+
num_return_sequences=1
|
20 |
+
)
|
21 |
+
|
22 |
+
return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ')
|
23 |
+
|
24 |
+
demo = gr.Interface(fn=generate__questions, inputs=[gr.Textbox(label='Context'),
|
25 |
+
gr.Textbox(label='Answer')] ,
|
26 |
+
outputs=gr.Textbox(label='Question'),
|
27 |
+
title="Arabic Question Generation",
|
28 |
+
description="Get the Question from given Context and a Answer")
|
29 |
+
demo.launch()
|