MikeTrizna's picture
Added application, model, and examples
16e1552
raw
history blame
1.59 kB
import gradio as gr
import numpy as np
from fastai.learner import load_learner
learn_imp = load_learner('prunus_model_res50_temp_trop_v3_fp16_22epochs.pkl')
def predict(image_np, description=None):
classes = ['neotropical racemose', 'paleotropical racemose',
'temperate diploid', 'temperate racemose']
pred,pred_idx,probs = learn_imp.predict(image_np)
confidences = {classes[idx]: f'{prob:.04f}' for idx, prob in enumerate(probs)}
return confidences
article = """Let's include a *table* here with links to the specific samples in the examples."""
example_list = ["examples/myrtifolia_1c086296-6d1f-4218-a18a-ca2f86c295d0.jpg",
"examples/oleifolia_104f44c9-63f1-4579-93c2-54c6ddeddeda.jpg",
"examples/oocarpa_e3276fdd-ce58-40dc-bf20-8742f7634428.jpg",
"examples/pullei_e5ac59df-5b18-4c8d-a19b-02131d358855.jpg",
"examples/serotina_0060a57d-e779-4984-913c-95b576daf0d3.jpg",
"examples/grayana_b9fa9ff9-2e8b-42f5-8728-5b0b5be98490.jpg",
"examples/glandulosa_52e06de9-c035-4afc-9fac-c8bee7628d38.jpg",
"examples/pensylvanica_0b13e5eb-73da-4e0e-9b1a-794b737f7716.jpg"]
demo = gr.Interface(predict,
gr.Image(type="numpy"),
outputs="label",
examples=example_list,
description="Upload a digitized herbarium sheet, or choose one of the examples below",
title="Image Classification of Diploid or Racemose Plants",
article=article)
demo.launch()