File size: 2,389 Bytes
fbc7e49
52a9cd3
 
 
02b7760
52a9cd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e3cc67
52a9cd3
5e3cc67
 
52a9cd3
 
 
7967a92
5e3cc67
 
 
 
 
52a9cd3
5e3cc67
9a04609
0b54f43
52a9cd3
 
 
 
 
 
fbc7e49
e8c22b8
 
c77bb9e
fbc7e49
afc3612
 
 
 
3c9bd97
afc3612
 
 
 
 
 
02b7760
afc3612
fbc7e49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
import chromadb
from sentence_transformers import CrossEncoder, SentenceTransformer
import json

print("Setup client")
chroma_client = chromadb.Client()
collection = chroma_client.create_collection(
    name="food_collection",
    metadata={"hnsw:space": "cosine"} # l2 is the default
)

print("load data")
with open("test_json.json", "r") as f:
    payload = json.load(f)

def embedding_function(items_to_embed: list[str]):
    print("embedding")
    sentence_model = SentenceTransformer(
        "mixedbread-ai/mxbai-embed-large-v1"
    )
    embedded_items = sentence_model.encode(
        items_to_embed
    )
    print(len(embedded_items))
    print(type(embedded_items[0]))
    print(type(embedded_items[0][0]))
    embedded_list = [item.tolist() for item in embedded_items]
    print(len(embedded_list))
    print(type(embedded_list[0]))
    print(type(embedded_list[0][0]))
    return embedded_list


print('upserting')
print("printing item:")
embedding = embedding_function([item['doc'] for item in payload])
print(type(embedding))
collection.add(
    collection_name="food",
    documents=[item['doc'] for item in payload],
    #embeddings=embedding,
    metadatas=[{'payload':item} for item in payload],
    ids=[f"id_{idx}" for idx, _ in enumerate(payload)]
    )

def search_chroma(query:str):
    results = client.query(
        #query_embeddings=embedding_function([query]),
        collection="food",
        query_text=query
        #n_results=2
    )
    return results
    text_only= [f"# Dish:\n{item}\n\n" for item in results['documents'][0]]
    return "".join(text_only)

def reranking_results(query: str, top_k_results: list[str]):
    # Load the model, here we use our base sized model
    rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
    reranked_results = rerank_model.rank(query, top_k_results, return_documents=True)
    return reranked_results

def run_query(query_string: str):
    meal_string = search_chroma(query_string)
    return meal_string

with gr.Blocks() as meal_search:
    gr.Markdown("Start typing below and then click **Run** to see the output.")
    with gr.Row():
        inp = gr.Textbox(placeholder="What sort of meal are you after?")
        out = gr.Markdown()
    btn = gr.Button("Run")
    btn.click(
        fn=run_query,
        inputs=inp, 
        outputs=out
    )

meal_search.launch()