Spaces:
Sleeping
Sleeping
File size: 2,389 Bytes
fbc7e49 52a9cd3 02b7760 52a9cd3 5e3cc67 52a9cd3 5e3cc67 52a9cd3 7967a92 5e3cc67 52a9cd3 5e3cc67 9a04609 0b54f43 52a9cd3 fbc7e49 e8c22b8 c77bb9e fbc7e49 afc3612 3c9bd97 afc3612 02b7760 afc3612 fbc7e49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import gradio as gr
import chromadb
from sentence_transformers import CrossEncoder, SentenceTransformer
import json
print("Setup client")
chroma_client = chromadb.Client()
collection = chroma_client.create_collection(
name="food_collection",
metadata={"hnsw:space": "cosine"} # l2 is the default
)
print("load data")
with open("test_json.json", "r") as f:
payload = json.load(f)
def embedding_function(items_to_embed: list[str]):
print("embedding")
sentence_model = SentenceTransformer(
"mixedbread-ai/mxbai-embed-large-v1"
)
embedded_items = sentence_model.encode(
items_to_embed
)
print(len(embedded_items))
print(type(embedded_items[0]))
print(type(embedded_items[0][0]))
embedded_list = [item.tolist() for item in embedded_items]
print(len(embedded_list))
print(type(embedded_list[0]))
print(type(embedded_list[0][0]))
return embedded_list
print('upserting')
print("printing item:")
embedding = embedding_function([item['doc'] for item in payload])
print(type(embedding))
collection.add(
collection_name="food",
documents=[item['doc'] for item in payload],
#embeddings=embedding,
metadatas=[{'payload':item} for item in payload],
ids=[f"id_{idx}" for idx, _ in enumerate(payload)]
)
def search_chroma(query:str):
results = client.query(
#query_embeddings=embedding_function([query]),
collection="food",
query_text=query
#n_results=2
)
return results
text_only= [f"# Dish:\n{item}\n\n" for item in results['documents'][0]]
return "".join(text_only)
def reranking_results(query: str, top_k_results: list[str]):
# Load the model, here we use our base sized model
rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1")
reranked_results = rerank_model.rank(query, top_k_results, return_documents=True)
return reranked_results
def run_query(query_string: str):
meal_string = search_chroma(query_string)
return meal_string
with gr.Blocks() as meal_search:
gr.Markdown("Start typing below and then click **Run** to see the output.")
with gr.Row():
inp = gr.Textbox(placeholder="What sort of meal are you after?")
out = gr.Markdown()
btn = gr.Button("Run")
btn.click(
fn=run_query,
inputs=inp,
outputs=out
)
meal_search.launch()
|