import gradio as gr import chromadb from sentence_transformers import CrossEncoder, SentenceTransformer import json print("Setup client") chroma_client = chromadb.Client() collection = chroma_client.create_collection( name="food_collection", metadata={"hnsw:space": "cosine"} # l2 is the default ) print("load data") with open("test_json.json", "r") as f: payload = json.load(f) def embedding_function(items_to_embed: list[str]): print("embedding") sentence_model = SentenceTransformer( "mixedbread-ai/mxbai-embed-large-v1" ) embedded_items = sentence_model.encode( items_to_embed ) print(len(embedded_items)) print(type(embedded_items[0])) print(type(embedded_items[0][0])) embedded_list = [item.tolist() for item in embedded_items] print(len(embedded_list)) print(type(embedded_list[0])) print(type(embedded_list[0][0])) return embedded_list print('upserting') print("printing item:") embedding = embedding_function([item['doc'] for item in payload]) print(type(embedding)) collection.add( documents=[item['doc'] for item in payload], embeddings=embedding, #metadatas=[{'payload':item} for item in payload], ids=[f"id_{idx}" for idx, _ in enumerate(payload)] ) def search_chroma(query:str): results = collection.query( query_embeddings=embedding_function([query]), n_results=2 ) text_only= [f"# Dish:\n{item}\n\n" for item in results['documents'][0]] return "".join(text_only) def reranking_results(query: str, top_k_results: list[str]): # Load the model, here we use our base sized model rerank_model = CrossEncoder("mixedbread-ai/mxbai-rerank-xsmall-v1") reranked_results = rerank_model.rank(query, top_k_results, return_documents=True) return reranked_results def run_query(query_string: str): meal_string = search_chroma(query_string) return meal_string with gr.Blocks() as meal_search: gr.Markdown("Start typing below and then click **Run** to see the output.") with gr.Row(): inp = gr.Textbox(placeholder="What sort of meal are you after?") out = gr.Markdown() btn = gr.Button("Run") btn.click( fn=run_query, inputs=inp, outputs=out ) meal_search.launch()