Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from model import create_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Loading saved weights | |
model, transforms = create_model(num_classes=13) | |
model_load_dict = torch.load('iran_cars_model_dict.pth', map_location=torch.device('cpu')) | |
model.load_state_dict(model_load_dict['state_dict']) | |
class_names = model_load_dict['class_names'] | |
def predict(img): | |
"""Transforms and performs a prediction on img | |
and returns prediction and time taken. | |
""" | |
# starting the timer | |
start_time = timer() | |
# transforming the target image and adding a batch dimention | |
img = transforms(img).unsqueeze(0) | |
# putting model into evaluation mode | |
model.eval() | |
# turning on inference_mode in context manager | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(model(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
title = 'Iran Cars ComputerVision_V0 🚗' | |
description = 'an EfficientNetb0 CV model created by MiladAbdollahi' | |
article = 'github.com/Milad-Abdollahi' | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type='pil'), | |
outputs=[gr.Label(num_top_classes=13, label='Predictions'), | |
gr.Number(Label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
demo.launch() | |