IranCars_V0 / app.py
MiladAbdollahi's picture
Update app.py
3b0a72d
import gradio as gr
import os
import torch
from model import create_model
from timeit import default_timer as timer
from typing import Tuple, Dict
# Loading saved weights
model, transforms = create_model(num_classes=13)
model_load_dict = torch.load('iran_cars_model_dict.pth', map_location=torch.device('cpu'))
model.load_state_dict(model_load_dict['state_dict'])
class_names = model_load_dict['class_names']
def predict(img):
"""Transforms and performs a prediction on img
and returns prediction and time taken.
"""
# starting the timer
start_time = timer()
# transforming the target image and adding a batch dimention
img = transforms(img).unsqueeze(0)
# putting model into evaluation mode
model.eval()
# turning on inference_mode in context manager
with torch.inference_mode():
pred_probs = torch.softmax(model(img), dim=1)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
title = 'Iran Cars ComputerVision_V0 🚗'
description = 'an EfficientNetb0 CV model created by MiladAbdollahi'
article = 'github.com/Milad-Abdollahi'
example_list = [["examples/" + example] for example in os.listdir("examples")]
demo = gr.Interface(fn=predict,
inputs=gr.Image(type='pil'),
outputs=[gr.Label(num_top_classes=13, label='Predictions'),
gr.Number(Label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article
)
demo.launch()