Mileena's picture
Duplicate from taesiri/CLIPxGamePhysics
5b0b9f1
import csv
import os
import pickle
import random
import sys
from collections import Counter
from glob import glob
import clip
import gdown
import gradio as gr
import numpy as np
import psutil
import torch
import torchvision
from datasets import load_dataset
from tqdm import tqdm
from SimSearch import FaissCosineNeighbors
csv.field_size_limit(sys.maxsize)
# Download Embeddings
gdown.cached_download(
url="https://huggingface.co/datasets/taesiri/GTA_V_CLIP_Embeddings/resolve/main/mini-GTA-V-Embeddings.zip",
path="./GTA-V-Embeddings.zip",
quiet=False,
md5="b1228503d5a89eef7e35e2cbf86b2fc0",
)
# EXTRACT
torchvision.datasets.utils.extract_archive(
from_path="GTA-V-Embeddings.zip",
to_path="Embeddings/VIT32/",
remove_finished=False,
)
# Load videos from Dataset
gta_v_videos = load_dataset("taesiri/GamePhysics_Grand_Theft_Auto_V")
post_id_to_video_path = {
os.path.splitext(os.path.basename(x))[0]: x
for x in gta_v_videos["Grand_Theft_Auto_V"][:]["video_file_path"]
}
# Initialize CLIP model
clip.available_models()
# Log runtime environment info
def log_runtime_information():
print(f"CPU Count: {psutil.cpu_count()}")
print(f"Virtual Memory: {psutil.virtual_memory()}")
print(f"Swap Memory: {psutil.swap_memory()}")
# # Searcher
class GamePhysicsSearcher:
def __init__(self, CLIP_MODEL, GAME_NAME, EMBEDDING_PATH="./Embeddings/VIT32/"):
self.CLIP_MODEL = CLIP_MODEL
self.GAME_NAME = GAME_NAME
self.simsearcher = FaissCosineNeighbors()
self.all_embeddings = glob(f"{EMBEDDING_PATH}{self.GAME_NAME}/*.npy")
self.filenames = [os.path.basename(x) for x in self.all_embeddings]
self.file_to_class_id = {x: i for i, x in enumerate(self.filenames)}
self.class_id_to_file = {i: x for i, x in enumerate(self.filenames)}
self.build_index()
def read_features(self, file_path):
with open(file_path, "rb") as f:
video_features = pickle.load(f)
return video_features
def read_all_features(self):
features = {}
filenames_extended = []
X_train = []
y_train = []
for i, vfile in enumerate(tqdm(self.all_embeddings)):
vfeatures = self.read_features(vfile)
features[vfile.split("/")[-1]] = vfeatures
X_train.extend(vfeatures)
y_train.extend([i] * vfeatures.shape[0])
filenames_extended.extend(vfeatures.shape[0] * [vfile.split("/")[-1]])
X_train = np.asarray(X_train)
y_train = np.asarray(y_train)
return X_train, y_train
def build_index(self):
X_train, y_train = self.read_all_features()
self.simsearcher.fit(X_train, y_train)
def text_to_vector(self, query):
text_tokens = clip.tokenize(query)
with torch.no_grad():
text_features = self.CLIP_MODEL.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features
# Source: https://stackoverflow.com/a/480227
def f7(self, seq):
seen = set()
seen_add = seen.add # This is for performance improvement, don't remove
return [x for x in seq if not (x in seen or seen_add(x))]
def search_top_k(self, q, k=5, pool_size=1000, search_mod="Majority"):
q = self.text_to_vector(q)
nearest_data_points = self.simsearcher.get_nearest_labels(q, pool_size)
if search_mod == "Majority":
topKs = [x[0] for x in Counter(nearest_data_points[0]).most_common(k)]
elif search_mod == "Top-K":
topKs = list(self.f7(nearest_data_points[0]))[:k]
video_filename = [
post_id_to_video_path[self.class_id_to_file[x].replace(".npy", "")]
for x in topKs
]
return video_filename
################ SEARCH CORE ################
# CRAETE CLIP MODEL
vit_model, vit_preprocess = clip.load("ViT-B/32")
vit_model.eval()
saved_searchers = {}
def gradio_search(query, game_name, selected_model, aggregator, pool_size, k=6):
# print(query, game_name, selected_model, aggregator, pool_size)
if f"{game_name}_{selected_model}" in saved_searchers.keys():
searcher = saved_searchers[f"{game_name}_{selected_model}"]
else:
if selected_model == "ViT-B/32":
model = vit_model
searcher = GamePhysicsSearcher(CLIP_MODEL=model, GAME_NAME=game_name)
else:
raise
saved_searchers[f"{game_name}_{selected_model}"] = searcher
results = []
relevant_videos = searcher.search_top_k(
query, k=k, pool_size=pool_size, search_mod=aggregator
)
params = ", ".join(
map(str, [query, game_name, selected_model, aggregator, pool_size])
)
results.append(params)
for v in relevant_videos:
results.append(v)
sid = v.split("/")[-1].split(".")[0]
results.append(
f'<a href="https://www.reddit.com/r/GamePhysics/comments/{sid}/" target="_blank">Link to the post</a>'
)
print(f"found {len(results)} results")
return results
def main():
list_of_games = ["Grand Theft Auto V"]
# GRADIO APP
main = gr.Interface(
fn=gradio_search,
inputs=[
gr.Textbox(
lines=1,
placeholder="Search Query",
value="A person flying in the air",
label="Query",
),
gr.Radio(list_of_games, label="Game To Search"),
gr.Radio(["ViT-B/32"], label="MODEL"),
gr.Radio(["Majority", "Top-K"], label="Aggregator"),
gr.Slider(300, 2000, label="Pool Size", value=1000),
],
outputs=[
gr.Textbox(type="auto", label="Search Params"),
gr.Video(type="mp4", label="Result 1"),
gr.Markdown(),
gr.Video(type="mp4", label="Result 2"),
gr.Markdown(),
gr.Video(type="mp4", label="Result 3"),
gr.Markdown(),
gr.Video(type="mp4", label="Result 4"),
gr.Markdown(),
gr.Video(type="mp4", label="Result 5"),
gr.Markdown(),
],
examples=[
["A red car", list_of_games[0], "ViT-B/32", "Top-K", 1000],
["A person wearing pink", list_of_games[0], "ViT-B/32", "Top-K", 1000],
["A car flying in the air", list_of_games[0], "ViT-B/32", "Majority", 1000],
[
"A person flying in the air",
list_of_games[0],
"ViT-B/32",
"Majority",
1000,
],
[
"A car in vertical position",
list_of_games[0],
"ViT-B/32",
"Majority",
1000,
],
["A bike inside a car", list_of_games[0], "ViT-B/32", "Majority", 1000],
["A bike on a wall", list_of_games[0], "ViT-B/32", "Majority", 1000],
["A car stuck in a rock", list_of_games[0], "ViT-B/32", "Majority", 1000],
["A car stuck in a tree", list_of_games[0], "ViT-B/32", "Majority", 1000],
],
)
blocks = gr.Blocks()
with blocks:
gr.Markdown(
"""
# CLIP + GamePhysics - Searching dataset of Gameplay bugs
This demo shows how to use the CLIP model to search for gameplay bugs in a video game.
Enter your query and select the game you want to search for.
"""
)
gr.Markdown(
"""
[Website](https://asgaardlab.github.io/CLIPxGamePhysics/) - [Paper](https://arxiv.org/abs/2203.11096)
"""
)
gr.TabbedInterface([main], ["GTA V Demo"])
blocks.launch(
debug=True,
enable_queue=True,
)
if __name__ == "__main__":
log_runtime_information()
main()