Spaces:
Running
Running
File size: 6,199 Bytes
9c31a35 976f8d8 3d7c303 9bfcbfa a2fd8f3 976f8d8 9b2a102 7d4300a 9c31a35 51a6b05 90fd5d4 9c31a35 7d4300a 9c31a35 5fe5010 90fd5d4 9c31a35 7d4300a 9c31a35 7d4300a c7187a6 3821242 4b56660 3821242 c7187a6 593c674 c7187a6 593c674 c7187a6 fbb7cf7 c7187a6 5fe5010 c7187a6 90fd5d4 c7187a6 5b0cc10 c7187a6 9bfcbfa b07eb2d fbb7cf7 4b56660 fbb7cf7 7d4300a dca02e2 593c674 7d4300a 9bfcbfa 593c674 7d4300a 9bfcbfa fbb7cf7 9bfcbfa dca02e2 5fe5010 9bfcbfa 90fd5d4 c7187a6 5b0cc10 9bfcbfa 962c25c 932dcf5 962c25c 90fd5d4 962c25c 90fd5d4 962c25c 5b0cc10 962c25c d4d95e5 fbb7cf7 4b56660 fbb7cf7 d4d95e5 c3a1736 593c674 d4d95e5 593c674 d4d95e5 fbb7cf7 dca02e2 d4d95e5 90fd5d4 d4d95e5 fbb7cf7 c3a1736 d398bf9 c3a1736 d4d95e5 90fd5d4 c7187a6 5b0cc10 d4d95e5 47dbec6 7cda629 c9cead8 7cda629 c9cead8 47dbec6 4b56660 7cda629 47dbec6 7cda629 47dbec6 7cda629 c9cead8 47dbec6 c9cead8 47dbec6 fbb7cf7 90fd5d4 47dbec6 5b0cc10 a2fd8f3 ef66f4a a2fd8f3 ef66f4a a2fd8f3 ef66f4a a2fd8f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import unittest
import numpy as np
import pandas as pd
import sympy
from .. import PySRRegressor, sympy2torch
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
# Need to import after juliacall:
import torch
self.torch = torch
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = self.torch.tensor(np.random.randn(1000, 3))
true = 1.0 * self.torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline_pandas(self):
X = pd.DataFrame(np.random.randn(100, 10))
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
extra_sympy_mappings={},
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"Loss": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh(checkpoint_file="equation_file.csv")
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(self.torch.tensor(X.values)).detach().numpy(),
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
decimal=3,
)
def test_pipeline(self):
X = np.random.randn(100, 10)
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"Loss": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file.csv.bkup"
)
model.refresh(checkpoint_file="equation_file.csv")
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
np.testing.assert_almost_equal(
tformat(self.torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # 2nd feature
decimal=3,
)
def test_mod_mapping(self):
x, y, z = sympy.symbols("x y z")
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
module = sympy2torch(expression, [x, y, z])
X = self.torch.rand(100, 3).float() * 10
true_out = (
X[:, 0] ** 2
+ self.torch.atanh(self.torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
)
torch_out = module(X)
np.testing.assert_array_almost_equal(
true_out.detach(), torch_out.detach(), decimal=3
)
def test_custom_operator(self):
X = np.random.randn(100, 3)
y = np.ones(X.shape[0])
model = PySRRegressor(
progress=False,
max_evals=10000,
model_selection="accuracy",
output_torch_format=True,
)
model.fit(X, y)
equations = pd.DataFrame(
{
"Equation": ["1.0", "mycustomoperator(x1)"],
"Loss": [1.0, 0.1],
"Complexity": [1, 2],
}
)
equations["Complexity Loss Equation".split(" ")].to_csv(
"equation_file_custom_operator.csv.bkup"
)
model.set_params(
equation_file="equation_file_custom_operator.csv",
extra_sympy_mappings={"mycustomoperator": sympy.sin},
extra_torch_mappings={"mycustomoperator": self.torch.sin},
)
model.refresh(checkpoint_file="equation_file_custom_operator.csv")
self.assertEqual(str(model.sympy()), "sin(x1)")
# Will automatically use the set global state from get_hof.
tformat = model.pytorch()
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
np.testing.assert_almost_equal(
tformat(self.torch.tensor(X)).detach().numpy(),
np.sin(X[:, 1]),
decimal=3,
)
def test_feature_selection_custom_operators(self):
rstate = np.random.RandomState(0)
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
cos_approx = lambda x: 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720
y = X["k15"] ** 2 + 2 * cos_approx(X["k20"])
model = PySRRegressor(
progress=False,
unary_operators=["cos_approx(x) = 1 - x^2 / 2 + x^4 / 24 + x^6 / 720"],
select_k_features=3,
maxsize=10,
early_stop_condition=1e-5,
extra_sympy_mappings={"cos_approx": cos_approx},
extra_torch_mappings={"cos_approx": cos_approx},
random_state=0,
deterministic=True,
procs=0,
multithreading=False,
)
np.random.seed(0)
model.fit(X.values, y.values)
torch_module = model.pytorch()
np_output = model.predict(X.values)
torch_output = torch_module(self.torch.tensor(X.values)).detach().numpy()
np.testing.assert_almost_equal(y.values, np_output, decimal=3)
np.testing.assert_almost_equal(y.values, torch_output, decimal=3)
def runtests(just_tests=False):
"""Run all tests in test_torch.py."""
tests = [TestTorch]
if just_tests:
return tests
loader = unittest.TestLoader()
suite = unittest.TestSuite()
for test in tests:
suite.addTests(loader.loadTestsFromTestCase(test))
runner = unittest.TextTestRunner()
return runner.run(suite)
|