File size: 4,105 Bytes
65159ce
 
 
 
 
 
7156334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65159ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7156334
65159ce
 
 
 
 
 
 
7156334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65159ce
 
 
 
 
7156334
 
65159ce
 
 
 
7156334
65159ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7156334
65159ce
 
 
 
 
 
 
 
7156334
 
 
 
 
 
 
65159ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7156334
65159ce
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected Jupyter notebook. Loading juliacall extension. Set `PYSR_AUTOLOAD_EXTENSIONS=no` to disable.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Precompiling SymbolicRegression\n",
      "\u001b[32m  βœ“ \u001b[39mSymbolicRegression\n",
      "  1 dependency successfully precompiled in 26 seconds. 106 already precompiled.\n",
      "Precompiling SymbolicRegressionJSON3Ext\n",
      "\u001b[32m  βœ“ \u001b[39m\u001b[90mSymbolicRegression β†’ SymbolicRegressionJSON3Ext\u001b[39m\n",
      "  1 dependency successfully precompiled in 2 seconds. 110 already precompiled.\n"
     ]
    }
   ],
   "source": [
    "# NBVAL_IGNORE_OUTPUT\n",
    "import numpy as np\n",
    "from pysr import PySRRegressor, jl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3\n"
     ]
    }
   ],
   "source": [
    "%%julia\n",
    "\n",
    "# Automatically activates Julia magic\n",
    "\n",
    "x = 1\n",
    "println(x + 2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4\n"
     ]
    }
   ],
   "source": [
    "%julia println(x + 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "my_loss (generic function with 1 method)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%%julia\n",
    "function my_loss(x)\n",
    "    x ^ 2\n",
    "end"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%julia my_loss(2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'PySRRegressor.equations_ = None'"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "rstate = np.random.RandomState(0)\n",
    "X = np.random.randn(10, 2)\n",
    "y = np.random.randn(10)\n",
    "\n",
    "model = PySRRegressor(deterministic=True, multithreading=False, procs=0, random_state=0, verbosity=0, progress=False, niterations=1, ncycles_per_iteration=1)\n",
    "str(model)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/mcranmer/PermaDocuments/SymbolicRegressionMonorepo/.venv/lib/python3.12/site-packages/pysr/sr.py:1297: UserWarning: Note: it looks like you are running in Jupyter. The progress bar will be turned off.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "pandas.core.frame.DataFrame"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.fit(X, y)\n",
    "type(model.equations_)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}