File size: 14,379 Bytes
c3da359
 
18c1f9c
901f043
ae6214c
 
bd4632a
901f043
162cbb5
901f043
a4a72db
 
ec1853e
a4a72db
 
43bfe9e
18c1f9c
 
5835f22
 
6083305
b9f583e
5835f22
 
 
 
 
 
 
 
 
 
 
 
4d9bd75
18c1f9c
 
8c0122a
18c1f9c
a203770
cf5c437
 
e881315
cf5c437
cf8bf07
18c1f9c
 
162cbb5
025ed0e
e987d40
 
 
 
 
 
e881315
10e246a
e987d40
 
 
 
 
 
 
 
 
 
49c1f08
 
e987d40
 
49c1f08
 
 
 
3f60d16
dc9d777
3f60d16
 
 
18c1f9c
3f60d16
8c58028
3f60d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18c1f9c
c59adef
e881315
c59adef
c0da614
dc1a4e7
b836a83
3f60d16
502bd82
f5d41d2
 
25164ef
 
f5d41d2
296ee04
ecc127c
 
 
925dcc4
fadf4db
 
296ee04
fadf4db
 
ecc127c
fadf4db
 
296ee04
fadf4db
 
5969aa3
fadf4db
296ee04
925dcc4
53256e6
925dcc4
 
fadf4db
7b75cd8
296ee04
925dcc4
7b75cd8
 
d0ea029
7b75cd8
925dcc4
ecc127c
296ee04
b7b7f87
ecc127c
fadf4db
296ee04
59cf3d0
fadf4db
ecc127c
296ee04
fadf4db
ecc127c
e881315
fadf4db
773f98b
fadf4db
3af12da
 
773f98b
fadf4db
296ee04
59cf3d0
fadf4db
59cf3d0
296ee04
bb97e2c
296ee04
59cf3d0
3c8d9b9
a42ffe5
 
 
 
 
 
 
fadf4db
59cf3d0
296ee04
fadf4db
 
 
 
e881315
fadf4db
e881315
4383c36
fadf4db
9433a83
 
 
 
 
 
296ee04
9433a83
 
e881315
7ab053d
bb97e2c
 
fe3d590
 
 
fb2bd3f
5908dc9
3f60d16
74541ce
 
1914007
5276a81
74541ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282a715
 
74541ce
 
 
 
 
0e8b257
6c3fb57
74541ce
 
6c3fb57
74541ce
 
 
 
3f60d16
fadf4db
 
 
 
296ee04
fadf4db
a2ee961
fadf4db
296ee04
9074ab0
 
 
c9f1ebd
296ee04
fadf4db
 
 
296ee04
fadf4db
 
8b9896b
 
ee2d4ea
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
[//]: # (Logo:)

<div align="center">

https://user-images.githubusercontent.com/7593028/188328887-1b6cda72-2f41-439e-ae23-75dd3489bc24.mp4

# PySR: High-Performance Symbolic Regression in Python and Julia

PySR uses evolutionary algorithms to search for symbolic expressions which optimize a particular objective.

| **Docs** | **Forums** | **colab demo** |
|:---:|:---:|:---:|
|[![Documentation](https://github.com/MilesCranmer/PySR/actions/workflows/docs.yml/badge.svg)](https://astroautomata.com/PySR/)|[![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions)|[![Colab](https://img.shields.io/badge/colab-notebook-yellow)](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb)|
| **pip** | **conda** | **Stats** |
|[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)|[![Conda Version](https://img.shields.io/conda/vn/conda-forge/pysr.svg)](https://anaconda.org/conda-forge/pysr)|<div align="center">pip: [![Downloads](https://pepy.tech/badge/pysr)](https://badge.fury.io/py/pysr)<br>conda: [![Anaconda-Server Badge](https://anaconda.org/conda-forge/pysr/badges/downloads.svg)](https://anaconda.org/conda-forge/pysr)</div>|

</div>

We warmly welcome new contributors and are happy to get you up to speed! Check out our contributors [guide](https://github.com/MilesCranmer/PySR/blob/master/CONTRIBUTORS.md) for tips πŸš€.
If you have an idea for a new feature, don't hesitate to share it on the [issues](https://github.com/MilesCranmer/PySR/issues) or [discussions](https://github.com/MilesCranmer/PySR/discussions) page.

If you find PySR useful, please cite it using the citation information given in [CITATION.md](https://github.com/MilesCranmer/PySR/blob/master/CITATION.md).
If you've finished a project with PySR, please submit a PR to showcase your work on the [research showcase page](https://astroautomata.com/PySR/papers)!

### Contributors

<!-- ALL-CONTRIBUTORS-LIST:START - Do not remove or modify this section -->
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->

<!-- markdownlint-restore -->
<!-- prettier-ignore-end -->

<!-- ALL-CONTRIBUTORS-LIST:END -->

<div align="center">

### Test status

| **Linux** | **Windows** | **macOS** |
|---|---|---|
|[![Linux](https://github.com/MilesCranmer/PySR/actions/workflows/CI.yml/badge.svg)](https://github.com/MilesCranmer/PySR/actions/workflows/CI.yml)|[![Windows](https://github.com/MilesCranmer/PySR/actions/workflows/CI_Windows.yml/badge.svg)](https://github.com/MilesCranmer/PySR/actions/workflows/CI_Windows.yml)|[![macOS](https://github.com/MilesCranmer/PySR/actions/workflows/CI_mac.yml/badge.svg)](https://github.com/MilesCranmer/PySR/actions/workflows/CI_mac.yml)|
| **Docker** | **Conda** | **Coverage** |
|[![Docker](https://github.com/MilesCranmer/PySR/actions/workflows/CI_docker.yml/badge.svg)](https://github.com/MilesCranmer/PySR/actions/workflows/CI_docker.yml)|[![conda-forge](https://github.com/MilesCranmer/PySR/actions/workflows/CI_conda_forge.yml/badge.svg)](https://github.com/MilesCranmer/PySR/actions/workflows/CI_conda_forge.yml)|[![Coverage Status](https://coveralls.io/repos/github/MilesCranmer/PySR/badge.svg?branch=master&service=github)](https://coveralls.io/github/MilesCranmer/PySR)|

</div>

PySR is built on an extremely optimized pure-Julia backend: [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl).

Symbolic regression is a very interpretable machine learning algorithm
for low-dimensional problems: these tools search equation space
to find algebraic relations that approximate a dataset.

One can also
extend these approaches to higher-dimensional
spaces by using a neural network as proxy, as explained in
[2006.11287](https://arxiv.org/abs/2006.11287), where we apply
it to N-body problems. Here, one essentially uses
symbolic regression to convert a neural net
to an analytic equation. Thus, these tools simultaneously present
an explicit and powerful way to interpret deep models.

*Backstory:*

Previously, we have used
[eureqa](https://www.creativemachineslab.com/eureqa.html),
which is a very efficient and user-friendly tool. However,
eureqa is GUI-only, doesn't allow for user-defined
operators, has no distributed capabilities,
and has become proprietary (and recently been merged into an online
service). Thus, the goal
of this package is to have an open-source symbolic regression tool
as efficient as eureqa, while also exposing a configurable
python interface.

## Installation

| [pip](#pip) | [conda](#conda) | [docker](#docker-build) |
|:---:|:---:|:---:|
| Everywhere (recommended) | Linux and Intel-based macOS | Everywhere (if all else fails) |

---

### pip

1. [Install Julia](https://julialang.org/downloads/)
    - Alternatively, my personal preference is to use [juliaup](https://github.com/JuliaLang/juliaup#installation), which performs this automatically.
2. Then, run:
```bash
pip install -U pysr
```
3. Finally, to install Julia dependencies:
```bash
python3 -c 'import pysr; pysr.install()'
```

---

### conda

The PySR build in conda includes all required dependencies, so you can install it by simply running:

```bash
conda install -c conda-forge pysr
```

in your desired environment. 

However, note that the conda install does not support precompilation of Julia libraries, so the
start time may be slightly slower as the JIT-compilation will be running.
(Once the compilation finishes, there will not be a performance difference though.)

---

### docker build

1. Clone this repo.
2. In the repo, run the build command with:
```bash
docker build -t pysr .
```
3. You can then start the container with an IPython execution with:
```bash
docker run -it --rm pysr ipython
```

For more details, see the [docker section](#docker).

---

### Common issues

Common issues tend to be related to Python not finding Julia.
To debug this, try running `python3 -c 'import os; print(os.environ["PATH"])'`.
If none of these folders contain your Julia binary, then you need to add Julia's `bin` folder to your `PATH` environment variable.

**Running PySR on macOS with an M1 processor:** you should use the pip version, and make sure to get the Julia binary for ARM/M-series processors.

## Introduction

You might wish to try the interactive tutorial [here](https://colab.research.google.com/github/MilesCranmer/PySR/blob/master/examples/pysr_demo.ipynb), which uses the notebook in `examples/pysr_demo.ipynb`.

In practice, I highly recommend using IPython rather than Jupyter, as the printing is much nicer.
Below is a quick demo here which you can paste into a Python runtime.
First, let's import numpy to generate some test data:

```python
import numpy as np

X = 2 * np.random.randn(100, 5)
y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5
```

We have created a dataset with 100 datapoints, with 5 features each.
The relation we wish to model is $2.5382 \cos(x_3) + x_0^2 - 0.5$.

Now, let's create a PySR model and train it.
PySR's main interface is in the style of scikit-learn:

```python
from pysr import PySRRegressor

model = PySRRegressor(
    niterations=40,  # < Increase me for better results
    binary_operators=["+", "*"],
    unary_operators=[
        "cos",
        "exp",
        "sin",
        "inv(x) = 1/x",
        # ^ Custom operator (julia syntax)
    ],
    extra_sympy_mappings={"inv": lambda x: 1 / x},
    # ^ Define operator for SymPy as well
    loss="loss(prediction, target) = (prediction - target)^2",
    # ^ Custom loss function (julia syntax)
)
```

This will set up the model for 40 iterations of the search code, which contains hundreds of thousands of mutations and equation evaluations.

Let's train this model on our dataset:

```python
model.fit(X, y)
```

Internally, this launches a Julia process which will do a multithreaded search for equations to fit the dataset.

Equations will be printed during training, and once you are satisfied, you may
quit early by hitting 'q' and then \<enter\>.

After the model has been fit, you can run `model.predict(X)`
to see the predictions on a given dataset using the automatically-selected expression,
or, for example, `model.predict(X, 3)` to see the predictions of the 3rd equation.

You may run:

```python
print(model)
```

to print the learned equations:

```python
PySRRegressor.equations_ = [
	   pick     score                                           equation       loss  complexity
	0        0.000000                                          4.4324794  42.354317           1
	1        1.255691                                          (x0 * x0)   3.437307           3
	2        0.011629                          ((x0 * x0) + -0.28087974)   3.358285           5
	3        0.897855                              ((x0 * x0) + cos(x3))   1.368308           6
	4        0.857018                ((x0 * x0) + (cos(x3) * 2.4566472))   0.246483           8
	5  >>>>       inf  (((cos(x3) + -0.19699033) * 2.5382123) + (x0 *...   0.000000          10
]
```

This arrow in the `pick` column indicates which equation is currently selected by your
`model_selection` strategy for prediction.
(You may change `model_selection` after `.fit(X, y)` as well.)

`model.equations_` is a pandas DataFrame containing all equations, including callable format
(`lambda_format`),
SymPy format (`sympy_format` - which you can also get with `model.sympy()`), and even JAX and PyTorch format
(both of which are differentiable - which you can get with `model.jax()` and `model.pytorch()`).

Note that `PySRRegressor` stores the state of the last search, and will restart from where you left off the next time you call `.fit()`, assuming you have set `warm_start=True`.
This will cause problems if significant changes are made to the search parameters (like changing the operators). You can run `model.reset()` to reset the state.

You will notice that PySR will save two files: `hall_of_fame...csv` and `hall_of_fame...pkl`.
The csv file is a list of equations and their losses, and the pkl file is a saved state of the model.
You may load the model from the `pkl` file with:

```python
model = PySRRegressor.from_file("hall_of_fame.2022-08-10_100832.281.pkl")
```

There are several other useful features such as denoising (e.g., `denoising=True`),
feature selection (e.g., `select_k_features=3`).
For examples of these and other features, see the [examples page](https://astroautomata.com/PySR/examples).
For a detailed look at more options, see the [options page](https://astroautomata.com/PySR/options).
You can also see the full API at [this page](https://astroautomata.com/PySR/api).
There are also tips for tuning PySR on [this page](https://astroautomata.com/PySR/tuning).

### Detailed Example

The following code makes use of as many PySR features as possible.
Note that is just a demonstration of features and you should not use this example as-is.
For details on what each parameter does, check out the [API page](https://astroautomata.com/PySR/api/).

```python
model = PySRRegressor(
    procs=4,
    populations=8,
    # ^ 2 populations per core, so one is always running.
    population_size=50,
    # ^ Slightly larger populations, for greater diversity.
    ncyclesperiteration=500, 
    # ^ Generations between migrations.
    niterations=10000000,  # Run forever
    early_stop_condition=(
        "stop_if(loss, complexity) = loss < 1e-6 && complexity < 10"
        # Stop early if we find a good and simple equation
    ),
    timeout_in_seconds=60 * 60 * 24,
    # ^ Alternatively, stop after 24 hours have passed.
    maxsize=50,
    # ^ Allow greater complexity.
    maxdepth=10,
    # ^ But, avoid deep nesting.
    binary_operators=["*", "+", "-", "/"],
    unary_operators=["square", "cube", "exp", "cos2(x)=cos(x)^2"],
    constraints={
        "/": (-1, 9),
        "square": 9,
        "cube": 9,
        "exp": 9,
    },
    # ^ Limit the complexity within each argument.
    # "inv": (-1, 9) states that the numerator has no constraint,
    # but the denominator has a max complexity of 9.
    # "exp": 9 simply states that `exp` can only have
    # an expression of complexity 9 as input.
    nested_constraints={
        "square": {"square": 1, "cube": 1, "exp": 0},
        "cube": {"square": 1, "cube": 1, "exp": 0},
        "exp": {"square": 1, "cube": 1, "exp": 0},
    },
    # ^ Nesting constraints on operators. For example,
    # "square(exp(x))" is not allowed, since "square": {"exp": 0}.
    complexity_of_operators={"/": 2, "exp": 3},
    # ^ Custom complexity of particular operators.
    complexity_of_constants=2,
    # ^ Punish constants more than variables
    select_k_features=4,
    # ^ Train on only the 4 most important features
    progress=True,
    # ^ Can set to false if printing to a file.
    weight_randomize=0.1,
    # ^ Randomize the tree much more frequently
    cluster_manager=None,
    # ^ Can be set to, e.g., "slurm", to run a slurm
    # cluster. Just launch one script from the head node.
    precision=64,
    # ^ Higher precision calculations.
    warm_start=True,
    # ^ Start from where left off.
    turbo=True,
    # ^ Faster evaluation (experimental)
    julia_project=None,
    # ^ Can set to the path of a folder containing the
    # "SymbolicRegression.jl" repo, for custom modifications.
    update=False,
    # ^ Don't update Julia packages
    extra_sympy_mappings={"cos2": lambda x: sympy.cos(x)**2},
    # extra_torch_mappings={sympy.cos: torch.cos},
    # ^ Not needed as cos already defined, but this
    # is how you define custom torch operators.
    # extra_jax_mappings={sympy.cos: "jnp.cos"},
    # ^ For JAX, one passes a string.
)
```

## Docker

You can also test out PySR in Docker, without
installing it locally, by running the following command in
the root directory of this repo:

```bash
docker build -t pysr .
```

This builds an image called `pysr` for your system's architecture,
which also contains IPython.

You can then run this with:

```bash
docker run -it --rm -v "$PWD:/data" pysr ipython
```

which will link the current directory to the container's `/data` directory
and then launch ipython.

If you have issues building for your system's architecture,
you can emulate another architecture by including `--platform linux/amd64`,
before the `build` and `run` commands.