File size: 3,760 Bytes
025ed0e
841d7fc
6083305
 
cf8bf07
3629549
 
4d9bd75
c8b410f
e987d40
49c1f08
cf8bf07
 
 
 
025ed0e
 
 
e987d40
 
 
 
 
 
 
10e246a
e987d40
 
 
 
 
 
 
 
 
 
 
49c1f08
 
e987d40
 
49c1f08
 
 
 
cfca8a4
cb14d73
5af7e2e
dc9d777
81463ee
 
 
5691c27
d4db4ce
 
b5a1925
 
bb4a4eb
8c58028
 
 
cb14d73
502bd82
1bd0408
ecc127c
 
1bd0408
ecc127c
 
 
 
 
 
17f6afe
53256e6
 
 
 
ecc127c
59cf3d0
ecc127c
0e17dde
ecc127c
 
 
 
59cf3d0
 
ecc127c
 
59cf3d0
 
 
 
 
0e17dde
59cf3d0
 
5908dc9
59cf3d0
5908dc9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# [PySR](https://github.com/MilesCranmer/PySR)

(pronounced like *py* as in python, and then *sur* as in surface)

[![Documentation Status](https://readthedocs.org/projects/pysr/badge/?version=latest)](https://pysr.readthedocs.io/en/latest/?badge=latest)
[![PyPI version](https://badge.fury.io/py/pysr.svg)](https://badge.fury.io/py/pysr)
[![Build Status](https://travis-ci.com/MilesCranmer/PySR.svg?branch=master)](https://travis-ci.com/MilesCranmer/PySR)

**Parallelized symbolic regression built on Julia, and interfaced by Python.
Uses regularized evolution, simulated annealing, and gradient-free optimization.**

[Cite this software](https://github.com/MilesCranmer/PySR/blob/master/CITATION.md)

[Documentation](https://pysr.readthedocs.io/en/latest)

Check out [SymbolicRegression.jl](https://github.com/MilesCranmer/SymbolicRegression.jl) for
the pure-Julia version of this package.

Symbolic regression is a very interpretable machine learning algorithm
for low-dimensional problems: these tools search equation space
to find algebraic relations that approximate a dataset.

One can also
extend these approaches to higher-dimensional
spaces by using a neural network as proxy, as explained in 
[2006.11287](https://arxiv.org/abs/2006.11287), where we apply
it to N-body problems. Here, one essentially uses
symbolic regression to convert a neural net
to an analytic equation. Thus, these tools simultaneously present
an explicit and powerful way to interpret deep models.


*Backstory:*

Previously, we have used
[eureqa](https://www.creativemachineslab.com/eureqa.html),
which is a very efficient and user-friendly tool. However,
eureqa is GUI-only, doesn't allow for user-defined
operators, has no distributed capabilities,
and has become proprietary (and recently been merged into an online
service). Thus, the goal
of this package is to have an open-source symbolic regression tool
as efficient as eureqa, while also exposing a configurable
python interface.


# Installation
PySR uses both Julia and Python, so you need to have both installed.

Install Julia - see [downloads](https://julialang.org/downloads/), and
then instructions for [mac](https://julialang.org/downloads/platform/#macos)
and [linux](https://julialang.org/downloads/platform/#linux_and_freebsd).
(Don't use the `conda-forge` version; it doesn't seem to work properly.)
Then, at the command line, install and precompile the backend
and Python frontend with:

```bash
julia -e 'using Pkg; Pkg.add("SymbolicRegression"); using SymbolicRegression'
pip install pysr
```

# Quickstart

Here is some demo code (also found in `example.py`)
```python
import numpy as np
from pysr import pysr, best

# Dataset
X = 2*np.random.randn(100, 5)
y = 2*np.cos(X[:, 3]) + X[:, 0]**2 - 2

# Learn equations
equations = pysr(X, y, niterations=5,
    binary_operators=["plus", "mult"],
    unary_operators=[
      "cos", "exp", "sin", #Pre-defined library of operators (see https://pysr.readthedocs.io/en/latest/docs/operators/)
      "inv(x) = 1/x"]) # Define your own operator! (Julia syntax)

...# (you can use ctl-c to exit early)

print(best(equations))
```

which gives:

```python
x0**2 + 2.000016*cos(x3) - 1.9999845
```

One can also use `best_tex` to get the LaTeX form,
or `best_callable` to get a function you can call.
This uses a score which balances complexity and error;
however, one can see the full list of equations with:
```python
print(equations)
```
This is a pandas table, with additional columns:

- `MSE` - the mean square error of the formula
- `score` - a metric akin to Occam's razor; you should use this to help select the "true" equation.
- `sympy_format` - sympy equation.
- `lambda_format` - a lambda function for that equation, that you can pass values through.