Spaces:
Running
Running
File size: 17,722 Bytes
cfca8a4 69c3f28 cfca8a4 9b9db9e a3a2513 5908dc9 bf37f2a 5908dc9 bf37f2a 5908dc9 bf37f2a 5908dc9 bf37f2a 5908dc9 cfca8a4 ecc6ae8 121e6ac 90049bc a1e142a 78cf882 7b7f087 78cf882 7b7f087 78cf882 4854265 5908dc9 7b7f087 a95ae71 7b7f087 683071f 319103f 7f5b38a 2ca2654 964082a ecc6ae8 8cfda07 cfca8a4 333f394 85d18bf 012bfcc 8cfda07 ecc6ae8 121e6ac 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 78cf882 34fadcf 012bfcc 2e104cc 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 683071f 7f5b38a 2ca2654 964082a 8cfda07 012bfcc 333f394 c27a9c8 a3a2513 ecc6ae8 319103f 333f394 85d18bf 964082a aadb328 29edd56 aadb328 964082a 7f5b38a aadb328 964082a 121e6ac aadb328 4ff119b a3a2513 b66d8de a3a2513 a95ae71 a1e142a a95ae71 a3a2513 b66d8de cfca8a4 ea010a7 0c0aff7 aadb328 1fca015 aadb328 226786e 319103f 683071f 226786e ecc6ae8 121e6ac 78cf882 35b5720 c28a133 2ca2654 964082a 226786e 2e104cc 226786e cfca8a4 da5e3e7 a3a2513 226786e c28a133 cfca8a4 964082a 7f5b38a 0c0aff7 cfca8a4 ea4213e 0c0aff7 cfca8a4 ecc6ae8 7e735f6 ecc6ae8 0c0aff7 a3a2513 bf37f2a ecc6ae8 a3a2513 4854265 bf37f2a 4854265 bf37f2a 4854265 5908dc9 bf37f2a 964082a bf37f2a c253783 bf37f2a 5908dc9 a3a2513 bf37f2a 964082a bf37f2a 964082a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, Symbol, lambdify
import subprocess
global_equation_file = 'hall_of_fame.csv'
global_n_features = None
global_variable_names = []
global_extra_sympy_mappings = {}
sympy_mappings = {
'div': lambda x, y : x/y,
'mult': lambda x, y : x*y,
'plus': lambda x, y : x + y,
'neg': lambda x : -x,
'pow': lambda x, y : sympy.sign(x)*abs(x)**y,
'cos': lambda x : sympy.cos(x),
'sin': lambda x : sympy.sin(x),
'tan': lambda x : sympy.tan(x),
'cosh': lambda x : sympy.cosh(x),
'sinh': lambda x : sympy.sinh(x),
'tanh': lambda x : sympy.tanh(x),
'exp': lambda x : sympy.exp(x),
'acos': lambda x : sympy.acos(x),
'asin': lambda x : sympy.asin(x),
'atan': lambda x : sympy.atan(x),
'acosh':lambda x : sympy.acosh(x),
'asinh':lambda x : sympy.asinh(x),
'atanh':lambda x : sympy.atanh(x),
'abs': lambda x : abs(x),
'mod': lambda x, y : sympy.Mod(x, y),
'erf': lambda x : sympy.erf(x),
'erfc': lambda x : sympy.erfc(x),
'logm': lambda x : sympy.log(abs(x)),
'logm10':lambda x : sympy.log10(abs(x)),
'logm2': lambda x : sympy.log2(abs(x)),
'log1p': lambda x : sympy.log(x + 1),
'floor': lambda x : sympy.floor(x),
'ceil': lambda x : sympy.ceil(x),
'sign': lambda x : sympy.sign(x),
'round': lambda x : sympy.round(x),
}
def pysr(X=None, y=None, weights=None,
procs=4,
populations=None,
niterations=100,
ncyclesperiteration=300,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"],
alpha=0.1,
annealing=True,
fractionReplaced=0.10,
fractionReplacedHof=0.10,
npop=1000,
parsimony=1e-4,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=10,
weightAddNode=1,
weightInsertNode=3,
weightDeleteNode=3,
weightDoNothing=1,
weightMutateConstant=10,
weightMutateOperator=1,
weightRandomize=1,
weightSimplify=0.01,
perturbationFactor=1.0,
nrestarts=3,
timeout=None,
extra_sympy_mappings={},
equation_file='hall_of_fame.csv',
test='simple1',
verbosity=1e9,
maxsize=20,
fast_cycle=False,
maxdepth=None,
variable_names=[],
batching=False,
batchSize=50,
select_k_features=None,
threads=None, #deprecated
julia_optimization=3,
):
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
Note: most default parameters have been tuned over several example
equations, but you should adjust `threads`, `niterations`,
`binary_operators`, `unary_operators` to your requirements.
:param X: np.ndarray or pandas.DataFrame, 2D array. Rows are examples,
columns are features. If pandas DataFrame, the columns are used
for variable names (so make sure they don't contain spaces).
:param y: np.ndarray, 1D array. Rows are examples.
:param weights: np.ndarray, 1D array. Each row is how to weight the
mean-square-error loss on weights.
:param procs: int, Number of processes (=number of populations running).
:param populations: int, Number of populations running; by default=procs.
:param niterations: int, Number of iterations of the algorithm to run. The best
equations are printed, and migrate between populations, at the
end of each.
:param ncyclesperiteration: int, Number of total mutations to run, per 10
samples of the population, per iteration.
:param binary_operators: list, List of strings giving the binary operators
in Julia's Base, or in `operator.jl`.
:param unary_operators: list, Same but for operators taking a single `Float32`.
:param alpha: float, Initial temperature.
:param annealing: bool, Whether to use annealing. You should (and it is default).
:param fractionReplaced: float, How much of population to replace with migrating
equations from other populations.
:param fractionReplacedHof: float, How much of population to replace with migrating
equations from hall of fame.
:param npop: int, Number of individuals in each population
:param parsimony: float, Multiplicative factor for how much to punish complexity.
:param migration: bool, Whether to migrate.
:param hofMigration: bool, Whether to have the hall of fame migrate.
:param shouldOptimizeConstants: bool, Whether to numerically optimize
constants (Nelder-Mead/Newton) at the end of each iteration.
:param topn: int, How many top individuals migrate from each population.
:param nrestarts: int, Number of times to restart the constant optimizer
:param perturbationFactor: float, Constants are perturbed by a max
factor of (perturbationFactor*T + 1). Either multiplied by this
or divided by this.
:param weightAddNode: float, Relative likelihood for mutation to add a node
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
:param weightMutateConstant: float, Relative likelihood for mutation to change
the constant slightly in a random direction.
:param weightMutateOperator: float, Relative likelihood for mutation to swap
an operator.
:param weightRandomize: float, Relative likelihood for mutation to completely
delete and then randomly generate the equation
:param weightSimplify: float, Relative likelihood for mutation to simplify
constant parts by evaluation
:param timeout: float, Time in seconds to timeout search
:param equation_file: str, Where to save the files (.csv separated by |)
:param test: str, What test to run, if X,y not passed.
:param maxsize: int, Max size of an equation.
:param maxdepth: int, Max depth of an equation. You can use both maxsize and maxdepth.
maxdepth is by default set to = maxsize, which means that it is redundant.
:param fast_cycle: bool, (experimental) - batch over population subsamples. This
is a slightly different algorithm than regularized evolution, but does cycles
15% faster. May be algorithmically less efficient.
:param variable_names: list, a list of names for the variables, other
than "x0", "x1", etc.
:param batching: bool, whether to compare population members on small batches
during evolution. Still uses full dataset for comparing against
hall of fame.
:param batchSize: int, the amount of data to use if doing batching.
:param select_k_features: (None, int), whether to run feature selection in
Python using random forests, before passing to the symbolic regression
code. None means no feature selection; an int means select that many
features.
:param julia_optimization: int, Optimization level (0, 1, 2, 3)
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
(as strings).
"""
if threads is not None:
raise ValueError("The threads kwarg is deprecated. Use procs.")
if maxdepth is None:
maxdepth = maxsize
if isinstance(X, pd.DataFrame):
variable_names = list(X.columns)
X = np.array(X)
use_custom_variable_names = (len(variable_names) != 0)
# Check for potential errors before they happen
assert len(unary_operators) + len(binary_operators) > 0
assert len(X.shape) == 2
assert len(y.shape) == 1
assert X.shape[0] == y.shape[0]
if weights is not None:
assert len(weights.shape) == 1
assert X.shape[0] == weights.shape[0]
if use_custom_variable_names:
assert len(variable_names) == X.shape[1]
if select_k_features is not None:
selection = run_feature_selection(X, y, select_k_features)
print(f"Using features {selection}")
X = X[:, selection]
if use_custom_variable_names:
variable_names = variable_names[selection]
if populations is None:
populations = procs
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'
if isinstance(binary_operators, str): binary_operators = [binary_operators]
if isinstance(unary_operators, str): unary_operators = [unary_operators]
if X is None:
if test == 'simple1':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
elif test == 'simple2':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
elif test == 'simple3':
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
elif test == 'simple4':
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
elif test == 'simple5':
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"
X = np.random.randn(100, 5)*3
y = eval(eval_str)
print("Running on", eval_str)
pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia'])
def_hyperparams = ""
# Add pre-defined functions to Julia
for op_list in [binary_operators, unary_operators]:
for i in range(len(op_list)):
op = op_list[i]
if '(' not in op:
continue
def_hyperparams += op + "\n"
# Cut off from the first non-alphanumeric char:
first_non_char = [
j for j in range(len(op))
if not (op[j].isalpha() or op[j].isdigit())][0]
function_name = op[:first_non_char]
op_list[i] = function_name
def_hyperparams += f"""include("{pkg_directory}/operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const maxdepth = {maxdepth:d}
const fast_cycle = {'true' if fast_cycle else 'false'}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nprocs = {procs:d}
const npopulations = {populations:d}
const nrestarts = {nrestarts:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const weighted = {"true" if weights is not None else "false"}
const batching = {"true" if batching else "false"}
const batchSize = {min([batchSize, len(X)]) if batching else len(X):d}
const useVarMap = {"true" if use_custom_variable_names else "false"}
const mutationWeights = [
{weightMutateConstant:f},
{weightMutateOperator:f},
{weightAddNode:f},
{weightInsertNode:f},
{weightDeleteNode:f},
{weightSimplify:f},
{weightRandomize:f},
{weightDoNothing:f}
]
"""
if X.shape[1] == 1:
X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])'
else:
X_str = str(X.tolist()).replace('],', '];').replace(',', '')
y_str = str(y.tolist())
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})"
if weights is not None:
weight_str = str(weights.tolist())
def_datasets += """
const weights = convert(Array{Float32, 1}, """f"{weight_str})"
if use_custom_variable_names:
def_hyperparams += f"""
const varMap = {'["' + '", "'.join(variable_names) + '"]'}"""
with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f:
print(def_hyperparams, file=f)
with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f:
print(def_datasets, file=f)
with open(f'/tmp/.runfile_{rand_string}.jl', 'w') as f:
print(f'@everywhere include("/tmp/.hyperparams_{rand_string}.jl")', file=f)
print(f'@everywhere include("/tmp/.dataset_{rand_string}.jl")', file=f)
print(f'@everywhere include("{pkg_directory}/sr.jl")', file=f)
print(f'fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})', file=f)
print(f'rmprocs(nprocs)', file=f)
command = [
f'julia', f'-O{julia_optimization:d}',
f'-p', f'{procs}',
f'/tmp/.runfile_{rand_string}.jl',
]
if timeout is not None:
command = [f'timeout', f'{timeout}'] + command
global global_n_features
global global_equation_file
global global_variable_names
global global_extra_sympy_mappings
global_n_features = X.shape[1]
global_equation_file = equation_file
global_variable_names = variable_names
global_extra_sympy_mappings = extra_sympy_mappings
print("Running on", ' '.join(command))
process = subprocess.Popen(command)
while True:
try:
process.wait()
except KeyboardInterrupt:
process.kill()
return get_hof()
def run_feature_selection(X, y, select_k_features):
"""Use a gradient boosting tree regressor as a proxy for finding
the k most important features in X, returning indices for those
features as output."""
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.feature_selection import SelectFromModel, SelectKBest
clf = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0, loss='ls') #RandomForestRegressor()
clf.fit(X, y)
selector = SelectFromModel(clf, threshold=-np.inf,
max_features=select_k_features, prefit=True)
return selector.get_support(indices=True)
def get_hof(equation_file=None, n_features=None, variable_names=None, extra_sympy_mappings=None):
"""Get the equations from a hall of fame file. If no arguments
entered, the ones used previously from a call to PySR will be used."""
global global_n_features
global global_equation_file
global global_variable_names
global global_extra_sympy_mappings
if equation_file is None: equation_file = global_equation_file
if n_features is None: n_features = global_n_features
if variable_names is None: variable_names = global_variable_names
if extra_sympy_mappings is None: extra_sympy_mappings = global_extra_sympy_mappings
try:
output = pd.read_csv(equation_file + '.bkup', sep="|")
except FileNotFoundError:
print("Couldn't find equation file!")
return pd.DataFrame()
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
use_custom_variable_names = (len(variable_names) != 0)
local_sympy_mappings = {
**extra_sympy_mappings,
**sympy_mappings
}
if use_custom_variable_names:
sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)]
else:
sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(n_features)]
for i in range(len(output)):
eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings)
sympy_format.append(eqn)
lambda_format.append(lambdify(sympy_symbols, eqn))
curMSE = output.loc[i, 'MSE']
curComplexity = output.loc[i, 'Complexity']
if lastMSE is None:
cur_score = 0.0
else:
cur_score = np.log(curMSE/lastMSE)/(curComplexity - lastComplexity)
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output['score'] = np.array(scores)
output['sympy_format'] = sympy_format
output['lambda_format'] = lambda_format
return output[['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format']]
def best_row(equations=None):
"""Return the best columns of a hall of fame file using the score column."""
if equations is None: equations = get_hof()
best_idx = np.argmax(equations['score'])
return equations.iloc[best_idx]
def best_tex(equations=None):
"""Return the equation with the best score, in latex format"""
if equations is None: equations = get_hof()
best_sympy = best_row(equations)['sympy_format']
return sympy.latex(best_sympy.simplify())
def best(equations=None):
"""Return the equation with the best score, in latex format"""
if equations is None: equations = get_hof()
best_sympy = best_row(equations)['sympy_format']
return best_sympy.simplify()
def best_tex(equations=None):
"""Return the equation with the best score, in latex format"""
if equations is None: equations = get_hof()
best_sympy = best_row(equations)['sympy_format']
return sympy.latex(best_sympy.simplify())
def best_function(equations=None):
"""Return the equation with the best score, in callable format"""
if equations is None: equations = get_hof()
return best_row(equations)['lambda_format']
|