Spaces:
Sleeping
Sleeping
File size: 3,911 Bytes
ac2928c 7e72d81 271a473 ac2928c 271a473 ac2928c 271a473 ac2928c 271a473 c88fbe0 ac2928c 271a473 ac2928c 271a473 c88fbe0 ac2928c 271a473 ac2928c c88fbe0 ac2928c 271a473 ac2928c 271a473 e2a7e95 271a473 e2a7e95 271a473 e2a7e95 271a473 ac2928c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import numpy as np
import csv
import traceback
class Problem:
"""
Problem API to work with PySR.
Has attributes: X, y as pysr accepts, form which is a string representing the correct equation and variable_names
Should be able to call pysr(problem.X, problem.y, var_names=problem.var_names) and have it work
"""
def __init__(self, X, y, form=None, variable_names=None):
self.X = X
self.y = y
self.form = form
self.variable_names = variable_names
class FeynmanProblem(Problem):
"""
Stores the data for the problems from the 100 Feynman Equations on Physics.
This is the benchmark used in the AI Feynman Paper
"""
def __init__(self, row, gen=False, dp=500):
"""
row: a row read as a dict from the FeynmanEquations dataset provided in the datasets folder of the repo
gen: If true the problem will have dp X and y values randomly generated else they will be None
"""
self.eq_id = row['Filename']
#self.form = row['Formula']
self.n_vars = int(row['# variables'])
super(FeynmanProblem, self).__init__(None, None, form=row['Formula'],
variable_names=[row[f'v{i + 1}_name'] for i in range(self.n_vars)])
#self.var_names = [row[f'v{i+1}_name'] for i in range(self.n_vars)]
self.low = [float(row[f'v{i+1}_low']) for i in range(self.n_vars)]
self.high = [float(row[f'v{i+1}_high']) for i in range(self.n_vars)]
self.dp = dp#int(row[f'datapoints'])
#self.X = None
#self.Y = None
if gen:
self.X = np.random.uniform(0.01, 25, size=(self.dp, self.n_vars))
d = {}
for var in range(len(self.variable_names)):
d[self.variable_names[var]] = self.X[:, var]
d['exp'] = np.exp
d['sqrt'] = np.sqrt
d['pi'] = np.pi
d['cos'] = np.cos
d['sin'] = np.sin
d['tan'] = np.tan
d['tanh'] = np.tanh
d['ln'] = np.log
d['log'] = np.log # Quite sure the Feynman dataset has no base 10 logs
d['arcsin'] = np.arcsin
self.y = eval(self.form,d)
return
def __str__(self):
return f"Feynman Equation: {self.eq_id}|Form: {self.form}"
def __repr__(self):
return str(self)
def mk_problems(first=100, gen=False, dp=500, data_dir="datasets/FeynmanEquations.csv"):
"""
first: the first "first" equations from the dataset will be made into problems
data_dir: the path pointing to the Feynman Equations csv
returns: list of FeynmanProblems
"""
ret = []
with open(data_dir) as csvfile:
ind = 0
reader = csv.DictReader(csvfile)
for i, row in enumerate(reader):
if ind > first:
break
if row['Filename'] == '': continue
try:
p = FeynmanProblem(row, gen=gen, dp=dp)
ret.append(p)
except Exception as e:
traceback.print_exc()
#print(row)
print(f"FAILED ON ROW {i}")
ind += 1
return ret
def run_on_problem(problem, verbosity=0):
"""
Takes in a problem and returns a tuple: (equations, best predicted equation, actual equation)
"""
from time import time
from . import pysr, best
starting = time()
equations = pysr(problem.X, problem.y, variable_names=problem.variable_names, verbosity=verbosity)
timing = time()-starting
others = {"equations": equations, "time": timing}
return best(equations), problem.form, others
if __name__ == "__main__":
ret = FeynmanProblem.mk_problems(first=100, gen=True)
print(ret) |