Spaces:
Sleeping
Sleeping
File size: 12,130 Bytes
cfca8a4 69c3f28 cfca8a4 9b9db9e a3a2513 5908dc9 cfca8a4 ecc6ae8 121e6ac 90049bc a1e142a 78cf882 7b7f087 78cf882 7b7f087 78cf882 4854265 5908dc9 7b7f087 a95ae71 7b7f087 ecc6ae8 8cfda07 cfca8a4 333f394 012bfcc 8cfda07 ecc6ae8 121e6ac 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 78cf882 34fadcf 012bfcc 2e104cc 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 8cfda07 012bfcc 333f394 c27a9c8 a3a2513 ecc6ae8 333f394 aadb328 29edd56 aadb328 121e6ac aadb328 5908dc9 4ff119b a3a2513 b66d8de a3a2513 a95ae71 a1e142a a95ae71 a3a2513 b66d8de cfca8a4 ea010a7 0c0aff7 aadb328 1fca015 aadb328 226786e ecc6ae8 121e6ac 78cf882 35b5720 c28a133 226786e 2e104cc 226786e cfca8a4 da5e3e7 a3a2513 226786e c28a133 cfca8a4 0c0aff7 cfca8a4 ea4213e 0c0aff7 cfca8a4 ecc6ae8 7e735f6 ecc6ae8 0c0aff7 a3a2513 8cfda07 ecc6ae8 a3a2513 4854265 e6db1f3 a3a2513 4854265 5908dc9 a3a2513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, Symbol, lambdify
sympy_mappings = {
'div': lambda x, y : x/y,
'mult': lambda x, y : x*y,
'plus': lambda x, y : x + y,
'neg': lambda x : -x,
'pow': lambda x, y : sympy.sign(x)*sympy.Abs(x)**y,
'cos': lambda x : sympy.cos(x),
'sin': lambda x : sympy.sin(x),
'tan': lambda x : sympy.tan(x),
'cosh': lambda x : sympy.cosh(x),
'sinh': lambda x : sympy.sinh(x),
'tanh': lambda x : sympy.tanh(x),
'exp': lambda x : sympy.exp(x),
'acos': lambda x : sympy.acos(x),
'asin': lambda x : sympy.asin(x),
'atan': lambda x : sympy.atan(x),
'acosh':lambda x : sympy.acosh(x),
'asinh':lambda x : sympy.asinh(x),
'atanh':lambda x : sympy.atanh(x),
'abs': lambda x : sympy.Abs(x),
'mod': lambda x, y : sympy.Mod(x, y),
'erf': lambda x : sympy.erf(x),
'erfc': lambda x : sympy.erfc(x),
'logm': lambda x : sympy.log(sympy.Abs(x)),
'logm10':lambda x : sympy.log10(sympy.Abs(x)),
'logm2': lambda x : sympy.log2(sympy.Abs(x)),
'log1p': lambda x : sympy.log(x + 1),
'floor': lambda x : sympy.floor(x),
'ceil': lambda x : sympy.ceil(x),
'sign': lambda x : sympy.sign(x),
'round': lambda x : sympy.round(x),
}
def pysr(X=None, y=None, weights=None,
procs=4,
populations=None,
niterations=100,
ncyclesperiteration=300,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"],
alpha=0.1,
annealing=True,
fractionReplaced=0.10,
fractionReplacedHof=0.10,
npop=1000,
parsimony=1e-4,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=10,
weightAddNode=1,
weightInsertNode=3,
weightDeleteNode=3,
weightDoNothing=1,
weightMutateConstant=10,
weightMutateOperator=1,
weightRandomize=1,
weightSimplify=0.01,
perturbationFactor=1.0,
nrestarts=3,
timeout=None,
extra_sympy_mappings={},
equation_file='hall_of_fame.csv',
test='simple1',
verbosity=1e9,
maxsize=20,
threads=None, #deprecated
julia_optimization=3,
):
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
Note: most default parameters have been tuned over several example
equations, but you should adjust `threads`, `niterations`,
`binary_operators`, `unary_operators` to your requirements.
:param X: np.ndarray, 2D array. Rows are examples, columns are features.
:param y: np.ndarray, 1D array. Rows are examples.
:param weights: np.ndarray, 1D array. Each row is how to weight the
mean-square-error loss on weights.
:param procs: int, Number of processes (=number of populations running).
:param populations: int, Number of populations running; by default=procs.
:param niterations: int, Number of iterations of the algorithm to run. The best
equations are printed, and migrate between populations, at the
end of each.
:param ncyclesperiteration: int, Number of total mutations to run, per 10
samples of the population, per iteration.
:param binary_operators: list, List of strings giving the binary operators
in Julia's Base, or in `operator.jl`.
:param unary_operators: list, Same but for operators taking a single `Float32`.
:param alpha: float, Initial temperature.
:param annealing: bool, Whether to use annealing. You should (and it is default).
:param fractionReplaced: float, How much of population to replace with migrating
equations from other populations.
:param fractionReplacedHof: float, How much of population to replace with migrating
equations from hall of fame.
:param npop: int, Number of individuals in each population
:param parsimony: float, Multiplicative factor for how much to punish complexity.
:param migration: bool, Whether to migrate.
:param hofMigration: bool, Whether to have the hall of fame migrate.
:param shouldOptimizeConstants: bool, Whether to numerically optimize
constants (Nelder-Mead/Newton) at the end of each iteration.
:param topn: int, How many top individuals migrate from each population.
:param nrestarts: int, Number of times to restart the constant optimizer
:param perturbationFactor: float, Constants are perturbed by a max
factor of (perturbationFactor*T + 1). Either multiplied by this
or divided by this.
:param weightAddNode: float, Relative likelihood for mutation to add a node
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
:param weightMutateConstant: float, Relative likelihood for mutation to change
the constant slightly in a random direction.
:param weightMutateOperator: float, Relative likelihood for mutation to swap
an operator.
:param weightRandomize: float, Relative likelihood for mutation to completely
delete and then randomly generate the equation
:param weightSimplify: float, Relative likelihood for mutation to simplify
constant parts by evaluation
:param timeout: float, Time in seconds to timeout search
:param equation_file: str, Where to save the files (.csv separated by |)
:param test: str, What test to run, if X,y not passed.
:param maxsize: int, Max size of an equation.
:param julia_optimization: int, Optimization level (0, 1, 2, 3)
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
(as strings).
"""
if threads is not None:
raise ValueError("The threads kwarg is deprecated. Use procs.")
# Check for potential errors before they happen
assert len(unary_operators) + len(binary_operators) > 0
assert len(X.shape) == 2
assert len(y.shape) == 1
assert X.shape[0] == y.shape[0]
if weights is not None:
assert len(weights.shape) == 1
assert X.shape[0] == weights.shape[0]
if populations is None:
populations = procs
local_sympy_mappings = {
**extra_sympy_mappings,
**sympy_mappings
}
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'
if isinstance(binary_operators, str): binary_operators = [binary_operators]
if isinstance(unary_operators, str): unary_operators = [unary_operators]
if X is None:
if test == 'simple1':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
elif test == 'simple2':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
elif test == 'simple3':
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
elif test == 'simple4':
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
elif test == 'simple5':
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"
X = np.random.randn(100, 5)*3
y = eval(eval_str)
print("Running on", eval_str)
pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia'])
def_hyperparams = ""
# Add pre-defined functions to Julia
for op_list in [binary_operators, unary_operators]:
for i in range(len(op_list)):
op = op_list[i]
if '(' not in op:
continue
def_hyperparams += op + "\n"
# Cut off from the first non-alphanumeric char:
first_non_char = [
j for j in range(len(op))
if not (op[j].isalpha() or op[j].isdigit())][0]
function_name = op[:first_non_char]
op_list[i] = function_name
def_hyperparams += f"""include("{pkg_directory}/operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nprocs = {procs:d}
const npopulations = {populations:d}
const nrestarts = {nrestarts:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const weighted = {"true" if weights is not None else "false"}
const mutationWeights = [
{weightMutateConstant:f},
{weightMutateOperator:f},
{weightAddNode:f},
{weightInsertNode:f},
{weightDeleteNode:f},
{weightSimplify:f},
{weightRandomize:f},
{weightDoNothing:f}
]
"""
if X.shape[1] == 1:
X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])'
else:
X_str = str(X.tolist()).replace('],', '];').replace(',', '')
y_str = str(y.tolist())
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})"
if weights is not None:
weight_str = str(weights.tolist())
def_datasets += """
const weights = convert(Array{Float32, 1}, """f"{weight_str})"
with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f:
print(def_hyperparams, file=f)
with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f:
print(def_datasets, file=f)
with open(f'/tmp/.runfile_{rand_string}.jl', 'w') as f:
print(f'@everywhere include("/tmp/.hyperparams_{rand_string}.jl")', file=f)
print(f'@everywhere include("/tmp/.dataset_{rand_string}.jl")', file=f)
print(f'@everywhere include("{pkg_directory}/sr.jl")', file=f)
print(f'fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})', file=f)
print(f'rmprocs(nprocs)', file=f)
command = [
f'julia -O{julia_optimization:d}',
f'-p {procs}',
f'/tmp/.runfile_{rand_string}.jl',
]
if timeout is not None:
command = [f'timeout {timeout}'] + command
cur_cmd = ' '.join(command)
print("Running on", cur_cmd)
os.system(cur_cmd)
try:
output = pd.read_csv(equation_file, sep="|")
except FileNotFoundError:
print("Couldn't find equation file!")
return pd.DataFrame()
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(X.shape[1])]
for i in range(len(output)):
eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings)
sympy_format.append(eqn)
lambda_format.append(lambdify(sympy_symbols, eqn))
curMSE = output.loc[i, 'MSE']
curComplexity = output.loc[i, 'Complexity']
if lastMSE is None:
cur_score = 0.0
else:
cur_score = np.log(curMSE/lastMSE)/(curComplexity - lastComplexity)
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output['score'] = np.array(scores)
output['sympy_format'] = sympy_format
output['lambda_format'] = lambda_format
return output[['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format']]
|