File size: 12,130 Bytes
cfca8a4
69c3f28
cfca8a4
9b9db9e
a3a2513
 
5908dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfca8a4
ecc6ae8
 
121e6ac
90049bc
 
a1e142a
 
78cf882
7b7f087
78cf882
 
 
 
7b7f087
 
 
78cf882
 
 
 
 
 
 
 
 
 
 
4854265
5908dc9
7b7f087
 
a95ae71
7b7f087
ecc6ae8
8cfda07
cfca8a4
333f394
 
 
 
 
012bfcc
 
8cfda07
 
ecc6ae8
121e6ac
012bfcc
333f394
 
012bfcc
333f394
012bfcc
333f394
012bfcc
 
 
 
333f394
012bfcc
333f394
012bfcc
 
 
 
 
333f394
012bfcc
78cf882
34fadcf
 
 
012bfcc
2e104cc
012bfcc
 
 
333f394
012bfcc
333f394
012bfcc
333f394
012bfcc
333f394
012bfcc
 
 
 
8cfda07
012bfcc
333f394
c27a9c8
a3a2513
ecc6ae8
 
333f394
aadb328
29edd56
aadb328
 
 
 
 
 
 
121e6ac
 
aadb328
5908dc9
 
 
 
 
4ff119b
a3a2513
 
 
 
 
 
b66d8de
a3a2513
a95ae71
a1e142a
 
 
 
 
a95ae71
a3a2513
 
 
b66d8de
cfca8a4
ea010a7
0c0aff7
aadb328
 
 
 
 
 
 
 
 
 
1fca015
aadb328
 
 
 
 
 
 
226786e
 
 
 
 
 
 
 
 
 
 
ecc6ae8
121e6ac
78cf882
35b5720
 
c28a133
226786e
 
 
 
2e104cc
226786e
 
 
 
 
cfca8a4
 
da5e3e7
 
 
 
a3a2513
 
226786e
c28a133
 
 
 
 
 
cfca8a4
0c0aff7
cfca8a4
ea4213e
0c0aff7
cfca8a4
 
ecc6ae8
 
 
7e735f6
ecc6ae8
 
 
0c0aff7
a3a2513
8cfda07
ecc6ae8
 
a3a2513
4854265
 
e6db1f3
a3a2513
 
4854265
 
 
 
5908dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3a2513
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, Symbol, lambdify

sympy_mappings = {
    'div':  lambda x, y : x/y,
    'mult': lambda x, y : x*y,
    'plus': lambda x, y : x + y,
    'neg':  lambda x    : -x,
    'pow':  lambda x, y : sympy.sign(x)*sympy.Abs(x)**y,
    'cos':  lambda x    : sympy.cos(x),
    'sin':  lambda x    : sympy.sin(x),
    'tan':  lambda x    : sympy.tan(x),
    'cosh': lambda x    : sympy.cosh(x),
    'sinh': lambda x    : sympy.sinh(x),
    'tanh': lambda x    : sympy.tanh(x),
    'exp':  lambda x    : sympy.exp(x),
    'acos': lambda x    : sympy.acos(x),
    'asin': lambda x    : sympy.asin(x),
    'atan': lambda x    : sympy.atan(x),
    'acosh':lambda x    : sympy.acosh(x),
    'asinh':lambda x    : sympy.asinh(x),
    'atanh':lambda x    : sympy.atanh(x),
    'abs':  lambda x    : sympy.Abs(x),
    'mod':  lambda x, y : sympy.Mod(x, y),
    'erf':  lambda x    : sympy.erf(x),
    'erfc': lambda x    : sympy.erfc(x),
    'logm': lambda x    : sympy.log(sympy.Abs(x)),
    'logm10':lambda x    : sympy.log10(sympy.Abs(x)),
    'logm2': lambda x    : sympy.log2(sympy.Abs(x)),
    'log1p': lambda x    : sympy.log(x + 1),
    'floor': lambda x    : sympy.floor(x),
    'ceil': lambda x    : sympy.ceil(x),
    'sign': lambda x    : sympy.sign(x),
    'round': lambda x    : sympy.round(x),
}

def pysr(X=None, y=None, weights=None,
            procs=4,
            populations=None,
            niterations=100,
            ncyclesperiteration=300,
            binary_operators=["plus", "mult"],
            unary_operators=["cos", "exp", "sin"],
            alpha=0.1,
            annealing=True,
            fractionReplaced=0.10,
            fractionReplacedHof=0.10,
            npop=1000,
            parsimony=1e-4,
            migration=True,
            hofMigration=True,
            shouldOptimizeConstants=True,
            topn=10,
            weightAddNode=1,
            weightInsertNode=3,
            weightDeleteNode=3,
            weightDoNothing=1,
            weightMutateConstant=10,
            weightMutateOperator=1,
            weightRandomize=1,
            weightSimplify=0.01,
            perturbationFactor=1.0,
            nrestarts=3,
            timeout=None,
            extra_sympy_mappings={},
            equation_file='hall_of_fame.csv',
            test='simple1',
            verbosity=1e9,
            maxsize=20,
            threads=None, #deprecated
            julia_optimization=3,
        ):
    """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
    Note: most default parameters have been tuned over several example
    equations, but you should adjust `threads`, `niterations`,
    `binary_operators`, `unary_operators` to your requirements.

    :param X: np.ndarray, 2D array. Rows are examples, columns are features.
    :param y: np.ndarray, 1D array. Rows are examples.
    :param weights: np.ndarray, 1D array. Each row is how to weight the
        mean-square-error loss on weights.
    :param procs: int, Number of processes (=number of populations running).
    :param populations: int, Number of populations running; by default=procs.
    :param niterations: int, Number of iterations of the algorithm to run. The best
        equations are printed, and migrate between populations, at the
        end of each.
    :param ncyclesperiteration: int, Number of total mutations to run, per 10
        samples of the population, per iteration.
    :param binary_operators: list, List of strings giving the binary operators
        in Julia's Base, or in `operator.jl`.
    :param unary_operators: list, Same but for operators taking a single `Float32`.
    :param alpha: float, Initial temperature.
    :param annealing: bool, Whether to use annealing. You should (and it is default).
    :param fractionReplaced: float, How much of population to replace with migrating
        equations from other populations.
    :param fractionReplacedHof: float, How much of population to replace with migrating
        equations from hall of fame.
    :param npop: int, Number of individuals in each population
    :param parsimony: float, Multiplicative factor for how much to punish complexity.
    :param migration: bool, Whether to migrate.
    :param hofMigration: bool, Whether to have the hall of fame migrate.
    :param shouldOptimizeConstants: bool, Whether to numerically optimize
        constants (Nelder-Mead/Newton) at the end of each iteration.
    :param topn: int, How many top individuals migrate from each population.
    :param nrestarts: int, Number of times to restart the constant optimizer
    :param perturbationFactor: float, Constants are perturbed by a max
        factor of (perturbationFactor*T + 1). Either multiplied by this
        or divided by this.
    :param weightAddNode: float, Relative likelihood for mutation to add a node
    :param weightInsertNode: float, Relative likelihood for mutation to insert a node
    :param weightDeleteNode: float, Relative likelihood for mutation to delete a node
    :param weightDoNothing: float, Relative likelihood for mutation to leave the individual
    :param weightMutateConstant: float, Relative likelihood for mutation to change
        the constant slightly in a random direction.
    :param weightMutateOperator: float, Relative likelihood for mutation to swap
        an operator.
    :param weightRandomize: float, Relative likelihood for mutation to completely
        delete and then randomly generate the equation
    :param weightSimplify: float, Relative likelihood for mutation to simplify
        constant parts by evaluation
    :param timeout: float, Time in seconds to timeout search
    :param equation_file: str, Where to save the files (.csv separated by |)
    :param test: str, What test to run, if X,y not passed.
    :param maxsize: int, Max size of an equation.
    :param julia_optimization: int, Optimization level (0, 1, 2, 3)
    :returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
        (as strings).

    """
    if threads is not None:
        raise ValueError("The threads kwarg is deprecated. Use procs.")

    # Check for potential errors before they happen
    assert len(unary_operators) + len(binary_operators) > 0
    assert len(X.shape) == 2
    assert len(y.shape) == 1
    assert X.shape[0] == y.shape[0]
    if weights is not None:
        assert len(weights.shape) == 1
        assert X.shape[0] == weights.shape[0]

    if populations is None:
        populations = procs

    local_sympy_mappings = {
            **extra_sympy_mappings,
            **sympy_mappings
    }

    rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'

    if isinstance(binary_operators, str): binary_operators = [binary_operators]
    if isinstance(unary_operators, str): unary_operators = [unary_operators]

    if X is None:
        if test == 'simple1':
            eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
        elif test == 'simple2':
            eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
        elif test == 'simple3':
            eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
        elif test == 'simple4':
            eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
        elif test == 'simple5':
            eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"

        X = np.random.randn(100, 5)*3
        y = eval(eval_str)
        print("Running on", eval_str)

    pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia'])

    def_hyperparams = ""

    # Add pre-defined functions to Julia
    for op_list in [binary_operators, unary_operators]:
        for i in range(len(op_list)):
            op = op_list[i]
            if '(' not in op:
                continue

            def_hyperparams += op + "\n"
            # Cut off from the first non-alphanumeric char:
            first_non_char = [
                    j for j in range(len(op))
                    if not (op[j].isalpha() or op[j].isdigit())][0]
            function_name = op[:first_non_char]
            op_list[i] = function_name

    def_hyperparams += f"""include("{pkg_directory}/operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nprocs = {procs:d}
const npopulations = {populations:d}
const nrestarts = {nrestarts:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const weighted = {"true" if weights is not None else "false"}
const mutationWeights = [
    {weightMutateConstant:f},
    {weightMutateOperator:f},
    {weightAddNode:f},
    {weightInsertNode:f},
    {weightDeleteNode:f},
    {weightSimplify:f},
    {weightRandomize:f},
    {weightDoNothing:f}
]
    """

    if X.shape[1] == 1:
        X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])'
    else:
        X_str = str(X.tolist()).replace('],', '];').replace(',', '')
    y_str = str(y.tolist())

    def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})"

    if weights is not None:
        weight_str = str(weights.tolist())
        def_datasets += """
const weights = convert(Array{Float32, 1}, """f"{weight_str})"

    with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f:
        print(def_hyperparams, file=f)

    with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f:
        print(def_datasets, file=f)

    with open(f'/tmp/.runfile_{rand_string}.jl', 'w') as f:
        print(f'@everywhere include("/tmp/.hyperparams_{rand_string}.jl")', file=f)
        print(f'@everywhere include("/tmp/.dataset_{rand_string}.jl")', file=f)
        print(f'@everywhere include("{pkg_directory}/sr.jl")', file=f)
        print(f'fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})', file=f)
        print(f'rmprocs(nprocs)', file=f)


    command = [
        f'julia -O{julia_optimization:d}',
        f'-p {procs}',
        f'/tmp/.runfile_{rand_string}.jl',
        ]
    if timeout is not None:
        command = [f'timeout {timeout}'] + command
    cur_cmd = ' '.join(command)
    print("Running on", cur_cmd)
    os.system(cur_cmd)
    try:
        output = pd.read_csv(equation_file, sep="|")
    except FileNotFoundError:
        print("Couldn't find equation file!")
        return pd.DataFrame()

    scores = []
    lastMSE = None
    lastComplexity = 0
    sympy_format = []
    lambda_format = []
    sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(X.shape[1])]
    for i in range(len(output)):
        eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings)
        sympy_format.append(eqn)
        lambda_format.append(lambdify(sympy_symbols, eqn))
        curMSE = output.loc[i, 'MSE']
        curComplexity = output.loc[i, 'Complexity']

        if lastMSE is None:
            cur_score = 0.0
        else:
            cur_score = np.log(curMSE/lastMSE)/(curComplexity - lastComplexity)

        scores.append(cur_score)
        lastMSE = curMSE
        lastComplexity = curComplexity


    output['score'] = np.array(scores)
    output['sympy_format'] = sympy_format
    output['lambda_format'] = lambda_format
    return output[['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format']]