PySR / julia /sr.jl
MilesCranmer's picture
Meta-program branching table rather than array of operators
e2ae8ef
raw
history blame
34.5 kB
import Optim
import Printf: @printf
import Random: shuffle!, randperm
const maxdegree = 2
const actualMaxsize = maxsize + maxdegree
# Sum of square error between two arrays
function SSE(x::Array{Float32}, y::Array{Float32})::Float32
diff = (x - y)
return sum(diff .* diff)
end
function SSE(x::Nothing, y::Array{Float32})::Float32
return 1f9
end
# Sum of square error between two arrays, with weights
function SSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
diff = (x - y)
return sum(diff .* diff .* w)
end
function SSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
return Nothing
end
# Mean of square error between two arrays
function MSE(x::Nothing, y::Array{Float32})::Float32
return 1f9
end
# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32})::Float32
return SSE(x, y)/size(x)[1]
end
# Mean of square error between two arrays
function MSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32
return 1f9
end
# Mean of square error between two arrays
function MSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32
return SSE(x, y, w)/sum(w)
end
const len = size(X)[1]
if weighted
const avgy = sum(y .* weights)/sum(weights)
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy), weights)
else
const avgy = sum(y)/len
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy))
end
id = (x,) -> x
const nuna = size(unaops)[1]
const nbin = size(binops)[1]
const nops = nuna + nbin
const nvar = size(X)[2];
function debug(verbosity, string...)
verbosity > 0 ? println(string...) : nothing
end
function getTime()::Integer
return round(Integer, 1e3*(time()-1.6e9))
end
# Define a serialization format for the symbolic equations:
mutable struct Node
#Holds operators, variables, constants in a tree
degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc.
val::Union{Float32, Integer} #Either const value, or enumerates variable
constant::Bool #false if variable
op::Integer #enumerates operator (separately for degree=1,2)
l::Union{Node, Nothing}
r::Union{Node, Nothing}
Node(val::Float32) = new(0, val, true, 1, nothing, nothing)
Node(val::Integer) = new(0, val, false, 1, nothing, nothing)
Node(op::Integer, l::Node) = new(1, 0.0f0, false, op, l, nothing)
Node(op::Integer, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing)
Node(op::Integer, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r)
#Allow to pass the leaf value without additional node call:
Node(op::Integer, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r)
Node(op::Integer, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r))
Node(op::Integer, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r))
end
# Copy an equation (faster than deepcopy)
function copyNode(tree::Node)::Node
if tree.degree == 0
return Node(tree.val)
elseif tree.degree == 1
return Node(tree.op, copyNode(tree.l))
else
return Node(tree.op, copyNode(tree.l), copyNode(tree.r))
end
end
# Count the operators, constants, variables in an equation
function countNodes(tree::Node)::Integer
if tree.degree == 0
return 1
elseif tree.degree == 1
return 1 + countNodes(tree.l)
else
return 1 + countNodes(tree.l) + countNodes(tree.r)
end
end
# Count the max depth of a tree
function countDepth(tree::Node)::Integer
if tree.degree == 0
return 1
elseif tree.degree == 1
return 1 + countDepth(tree.l)
else
return 1 + max(countDepth(tree.l), countDepth(tree.r))
end
end
# Convert an equation to a string
function stringTree(tree::Node)::String
if tree.degree == 0
if tree.constant
return string(tree.val)
else
if useVarMap
return varMap[tree.val]
else
return "x$(tree.val - 1)"
end
end
elseif tree.degree == 1
return "$(unaops[tree.op])($(stringTree(tree.l)))"
else
return "$(binops[tree.op])($(stringTree(tree.l)), $(stringTree(tree.r)))"
end
end
# Print an equation
function printTree(tree::Node)
println(stringTree(tree))
end
# Return a random node from the tree
function randomNode(tree::Node)::Node
if tree.degree == 0
return tree
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNode(tree.l)
elseif i == b + 1
return tree
end
return randomNode(tree.r)
end
# Count the number of unary operators in the equation
function countUnaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 1 + countUnaryOperators(tree.l)
else
return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r)
end
end
# Count the number of binary operators in the equation
function countBinaryOperators(tree::Node)::Integer
if tree.degree == 0
return 0
elseif tree.degree == 1
return 0 + countBinaryOperators(tree.l)
else
return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r)
end
end
# Count the number of operators in the equation
function countOperators(tree::Node)::Integer
return countUnaryOperators(tree) + countBinaryOperators(tree)
end
# Randomly convert an operator into another one (binary->binary;
# unary->unary)
function mutateOperator(tree::Node)::Node
if countOperators(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree == 0
node = randomNode(tree)
end
if node.degree == 1
node.op = rand(1:length(unaops))
else
node.op = rand(1:length(binops))
end
return tree
end
# Count the number of constants in an equation
function countConstants(tree::Node)::Integer
if tree.degree == 0
return convert(Integer, tree.constant)
elseif tree.degree == 1
return 0 + countConstants(tree.l)
else
return 0 + countConstants(tree.l) + countConstants(tree.r)
end
end
# Randomly perturb a constant
function mutateConstant(
tree::Node, T::Float32,
probNegate::Float32=0.01f0)::Node
# T is between 0 and 1.
if countConstants(tree) == 0
return tree
end
node = randomNode(tree)
while node.degree != 0 || node.constant == false
node = randomNode(tree)
end
bottom = 0.1f0
maxChange = perturbationFactor * T + 1.0f0 + bottom
factor = maxChange^Float32(rand())
makeConstBigger = rand() > 0.5
if makeConstBigger
node.val *= factor
else
node.val /= factor
end
if rand() > probNegate
node.val *= -1
end
return tree
end
# Evaluate an equation over an array of datapoints
function evalTreeArray(tree::Node)::Union{Array{Float32, 1}, Nothing}
return evalTreeArray(tree, X)
end
# Evaluate an equation over an array of datapoints
function evalTreeArray(tree::Node, cX::Array{Float32, 2})::Union{Array{Float32, 1}, Nothing}
clen = size(cX)[1]
if tree.degree == 0
if tree.constant
return fill(tree.val, clen)
else
return copy(cX[:, tree.val])
end
elseif tree.degree == 1
cumulator = evalTreeArray(tree.l, cX)
if cumulator == nothing
return nothing
end
op_idx = tree.op
@inbounds @simd for i=1:clen
cumulator[i] = UNAOP(op_idx, cumulator[i])
end
@inbounds for i=1:clen
if isinf(cumulator[i]) || isnan(cumulator[i])
return nothing
end
end
return cumulator
else
cumulator = evalTreeArray(tree.l, cX)
if cumulator == nothing
return nothing
end
array2 = evalTreeArray(tree.r, cX)
if array2 == nothing
return nothing
end
op_idx = tree.op
@inbounds @simd for i=1:clen
cumulator[i] = BINOP(op_idx, cumulator[i], array2[i])
end
@inbounds for i=1:clen
if isinf(cumulator[i]) || isnan(cumulator[i])
return nothing
end
end
return cumulator
end
end
# Score an equation
function scoreFunc(tree::Node)::Float32
prediction = evalTreeArray(tree)
if prediction == nothing
return 1f9
end
if weighted
mse = MSE(prediction, y, weights)
else
mse = MSE(prediction, y)
end
return mse / baselineMSE + countNodes(tree)*parsimony
end
# Score an equation with a small batch
function scoreFuncBatch(tree::Node)::Float32
# batchSize
batch_idx = randperm(len)[1:batchSize]
batch_X = X[batch_idx, :]
prediction = evalTreeArray(tree, batch_X)
if prediction == nothing
return 1f9
end
size_adjustment = 1f0
batch_y = y[batch_idx]
if weighted
batch_w = weights[batch_idx]
mse = MSE(prediction, batch_y, batch_w)
size_adjustment = 1f0 * len / batchSize
else
mse = MSE(prediction, batch_y)
end
return size_adjustment * mse / baselineMSE + countNodes(tree)*parsimony
end
# Add a random unary/binary operation to the end of a tree
function appendRandomOp(tree::Node)::Node
node = randomNode(tree)
while node.degree != 0
node = randomNode(tree)
end
choice = rand()
makeNewBinOp = choice < nbin/nops
if rand() > 0.5
left = Float32(randn())
else
left = rand(1:nvar)
end
if rand() > 0.5
right = Float32(randn())
else
right = rand(1:nvar)
end
if makeNewBinOp
newnode = Node(
rand(1:length(binops)),
left,
right
)
else
newnode = Node(
rand(1:length(unaops)),
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Insert random node
function insertRandomOp(tree::Node)::Node
node = randomNode(tree)
choice = rand()
makeNewBinOp = choice < nbin/nops
left = copyNode(node)
if makeNewBinOp
right = randomConstantNode()
newnode = Node(
rand(1:length(binops)),
left,
right
)
else
newnode = Node(
rand(1:length(unaops)),
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return tree
end
# Add random node to the top of a tree
function prependRandomOp(tree::Node)::Node
node = tree
choice = rand()
makeNewBinOp = choice < nbin/nops
left = copyNode(tree)
if makeNewBinOp
right = randomConstantNode()
newnode = Node(
rand(1:length(binops)),
left,
right
)
else
newnode = Node(
rand(1:length(unaops)),
left
)
end
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
return node
end
function randomConstantNode()::Node
if rand() > 0.5
val = Float32(randn())
else
val = rand(1:nvar)
end
newnode = Node(val)
return newnode
end
# Return a random node from the tree with parent
function randomNodeAndParent(tree::Node, parent::Union{Node, Nothing})::Tuple{Node, Union{Node, Nothing}}
if tree.degree == 0
return tree, parent
end
a = countNodes(tree)
b = 0
c = 0
if tree.degree >= 1
b = countNodes(tree.l)
end
if tree.degree == 2
c = countNodes(tree.r)
end
i = rand(1:1+b+c)
if i <= b
return randomNodeAndParent(tree.l, tree)
elseif i == b + 1
return tree, parent
end
return randomNodeAndParent(tree.r, tree)
end
# Select a random node, and replace it an the subtree
# with a variable or constant
function deleteRandomOp(tree::Node)::Node
node, parent = randomNodeAndParent(tree, nothing)
isroot = (parent == nothing)
if node.degree == 0
# Replace with new constant
newnode = randomConstantNode()
node.l = newnode.l
node.r = newnode.r
node.op = newnode.op
node.degree = newnode.degree
node.val = newnode.val
node.constant = newnode.constant
elseif node.degree == 1
# Join one of the children with the parent
if isroot
return node.l
elseif parent.l == node
parent.l = node.l
else
parent.r = node.l
end
else
# Join one of the children with the parent
if rand() < 0.5
if isroot
return node.l
elseif parent.l == node
parent.l = node.l
else
parent.r = node.l
end
else
if isroot
return node.r
elseif parent.l == node
parent.l = node.r
else
parent.r = node.r
end
end
end
return tree
end
# Simplify tree
function combineOperators(tree::Node)::Node
# (const (+*) const) already accounted for
# ((const + var) + const) => (const + var)
# ((const * var) * const) => (const * var)
# (anything commutative!)
if tree.degree == 2 && (binops[tree.op] == plus || binops[tree.op] == mult)
op = tree.op
if tree.l.constant || tree.r.constant
# Put the constant in r
if tree.l.constant
tmp = tree.r
tree.r = tree.l
tree.l = tmp
end
topconstant = tree.r.val
# Simplify down first
tree.l = combineOperators(tree.l)
below = tree.l
if below.degree == 2 && below.op == op
if below.l.constant
tree = below
tree.l.val = binops[op](tree.l.val, topconstant)
elseif below.r.constant
tree = below
tree.r.val = binops[op](tree.r.val, topconstant)
end
end
end
end
return tree
end
# Simplify tree
function simplifyTree(tree::Node)::Node
if tree.degree == 1
tree.l = simplifyTree(tree.l)
if tree.l.degree == 0 && tree.l.constant
return Node(unaops[tree.op](tree.l.val))
end
elseif tree.degree == 2
tree.l = simplifyTree(tree.l)
tree.r = simplifyTree(tree.r)
constantsBelow = (
tree.l.degree == 0 && tree.l.constant &&
tree.r.degree == 0 && tree.r.constant
)
if constantsBelow
return Node(binops[tree.op](tree.l.val, tree.r.val))
end
end
return tree
end
# Define a member of population by equation, score, and age
mutable struct PopMember
tree::Node
score::Float32
birth::Integer
PopMember(t::Node) = new(t, scoreFunc(t), getTime())
PopMember(t::Node, score::Float32) = new(t, score, getTime())
end
# Go through one simulated annealing mutation cycle
# exp(-delta/T) defines probability of accepting a change
function iterate(member::PopMember, T::Float32, curmaxsize::Integer)::PopMember
prev = member.tree
tree = copyNode(prev)
#TODO - reconsider this
if batching
beforeLoss = scoreFuncBatch(member.tree)
else
beforeLoss = member.score
end
mutationChoice = rand()
weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0
cur_weights = copy(mutationWeights) .* 1.0
#More constants => more likely to do constant mutation
cur_weights[1] *= weightAdjustmentMutateConstant
n = countNodes(tree)
depth = countDepth(tree)
# If equation too big, don't add new operators
if n >= curmaxsize || depth >= maxdepth
cur_weights[3] = 0.0
cur_weights[4] = 0.0
end
cur_weights /= sum(cur_weights)
cweights = cumsum(cur_weights)
if mutationChoice < cweights[1]
tree = mutateConstant(tree, T)
elseif mutationChoice < cweights[2]
tree = mutateOperator(tree)
elseif mutationChoice < cweights[3]
if rand() < 0.5
tree = appendRandomOp(tree)
else
tree = prependRandomOp(tree)
end
elseif mutationChoice < cweights[4]
tree = insertRandomOp(tree)
elseif mutationChoice < cweights[5]
tree = deleteRandomOp(tree)
elseif mutationChoice < cweights[6]
tree = simplifyTree(tree) # Sometimes we simplify tree
tree = combineOperators(tree) # See if repeated constants at outer levels
return PopMember(tree, beforeLoss)
elseif mutationChoice < cweights[7]
tree = genRandomTree(5) # Sometimes we generate a new tree completely tree
else
return PopMember(tree, beforeLoss)
end
if batching
afterLoss = scoreFuncBatch(tree)
else
afterLoss = scoreFunc(tree)
end
if annealing
delta = afterLoss - beforeLoss
probChange = exp(-delta/(T*alpha))
return_unaltered = (isnan(afterLoss) || probChange < rand())
if return_unaltered
return PopMember(copyNode(prev), beforeLoss)
end
end
return PopMember(tree, afterLoss)
end
# Create a random equation by appending random operators
function genRandomTree(length::Integer)::Node
tree = Node(1.0f0)
for i=1:length
tree = appendRandomOp(tree)
end
return tree
end
# A list of members of the population, with easy constructors,
# which allow for random generation of new populations
mutable struct Population
members::Array{PopMember, 1}
n::Integer
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1])
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop)
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop)
end
# Sample 10 random members of the population, and make a new one
function samplePop(pop::Population)::Population
idx = rand(1:pop.n, ns)
return Population(pop.members[idx])
end
# Sample the population, and get the best member from that sample
function bestOfSample(pop::Population)::PopMember
sample = samplePop(pop)
best_idx = argmin([sample.members[member].score for member=1:sample.n])
return sample.members[best_idx]
end
function finalizeScores(pop::Population)::Population
need_recalculate = batching
if need_recalculate
@inbounds @simd for member=1:pop.n
pop.members[member].score = scoreFunc(pop.members[member].tree)
end
end
return pop
end
# Return best 10 examples
function bestSubPop(pop::Population; topn::Integer=10)::Population
best_idx = sortperm([pop.members[member].score for member=1:pop.n])
return Population(pop.members[best_idx[1:topn]])
end
# Pass through the population several times, replacing the oldest
# with the fittest of a small subsample
function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer)::Population
# Batch over each subsample. Can give 15% improvement in speed; probably moreso for large pops.
# but is ultimately a different algorithm than regularized evolution, and might not be
# as good.
if fast_cycle
shuffle!(pop.members)
n_evol_cycles = round(Integer, pop.n/ns)
babies = Array{PopMember}(undef, n_evol_cycles)
# Iterate each ns-member sub-sample
@inbounds Threads.@threads for i=1:n_evol_cycles
best_score = Inf32
best_idx = 1+(i-1)*ns
# Calculate best member of the subsample:
for sub_i=1+(i-1)*ns:i*ns
if pop.members[sub_i].score < best_score
best_score = pop.members[sub_i].score
best_idx = sub_i
end
end
allstar = pop.members[best_idx]
babies[i] = iterate(allstar, T, curmaxsize)
end
# Replace the n_evol_cycles-oldest members of each population
@inbounds for i=1:n_evol_cycles
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = babies[i]
end
else
for i=1:round(Integer, pop.n/ns)
allstar = bestOfSample(pop)
baby = iterate(allstar, T, curmaxsize)
#printTree(baby.tree)
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = baby
end
end
return pop
end
# Cycle through regularized evolution many times,
# printing the fittest equation every 10% through
function run(
pop::Population,
ncycles::Integer,
curmaxsize::Integer;
verbosity::Integer=0
)::Population
allT = LinRange(1.0f0, 0.0f0, ncycles)
for iT in 1:size(allT)[1]
if annealing
pop = regEvolCycle(pop, allT[iT], curmaxsize)
else
pop = regEvolCycle(pop, 1.0f0, curmaxsize)
end
if verbosity > 0 && (iT % verbosity == 0)
bestPops = bestSubPop(pop)
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
bestCurScore = bestPops.members[bestCurScoreIdx].score
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
end
end
return pop
end
# Get all the constants from a tree
function getConstants(tree::Node)::Array{Float32, 1}
if tree.degree == 0
if tree.constant
return [tree.val]
else
return Float32[]
end
elseif tree.degree == 1
return getConstants(tree.l)
else
both = [getConstants(tree.l), getConstants(tree.r)]
return [constant for subtree in both for constant in subtree]
end
end
# Set all the constants inside a tree
function setConstants(tree::Node, constants::Array{Float32, 1})
if tree.degree == 0
if tree.constant
tree.val = constants[1]
end
elseif tree.degree == 1
setConstants(tree.l, constants)
else
numberLeft = countConstants(tree.l)
setConstants(tree.l, constants)
setConstants(tree.r, constants[numberLeft+1:end])
end
end
# Proxy function for optimization
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32
setConstants(tree, x)
return scoreFunc(tree)
end
# Use Nelder-Mead to optimize the constants in an equation
function optimizeConstants(member::PopMember)::PopMember
nconst = countConstants(member.tree)
if nconst == 0
return member
end
x0 = getConstants(member.tree)
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
if size(x0)[1] == 1
algorithm = Optim.Newton
else
algorithm = Optim.NelderMead
end
try
result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100))
# Try other initial conditions:
for i=1:nrestarts
tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100))
if tmpresult.minimum < result.minimum
result = tmpresult
end
end
if Optim.converged(result)
setConstants(member.tree, result.minimizer)
member.score = convert(Float32, result.minimum)
member.birth = getTime()
else
setConstants(member.tree, x0)
end
catch error
# Fine if optimization encountered domain error, just return x0
if isa(error, AssertionError)
setConstants(member.tree, x0)
else
throw(error)
end
end
return member
end
# List of the best members seen all time
mutable struct HallOfFame
members::Array{PopMember, 1}
exists::Array{Bool, 1} #Whether it has been set
# Arranged by complexity - store one at each.
HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize])
end
# Check for errors before they happen
function testConfiguration()
test_input = LinRange(-100f0, 100f0, 99)
try
for left in test_input
for right in test_input
for binop in binops
test_output = binop.(left, right)
end
end
for unaop in unaops
test_output = unaop.(left)
end
end
catch error
@printf("\n\nYour configuration is invalid - one of your operators is not well-defined over the real line.\n\n\n")
throw(error)
end
end
function fullRun(niterations::Integer;
npop::Integer=300,
ncyclesperiteration::Integer=3000,
fractionReplaced::Float32=0.1f0,
verbosity::Integer=0,
topn::Integer=10
)
testConfiguration()
# 1. Start a population on every process
allPops = Future[]
# Set up a channel to send finished populations back to head node
channels = [RemoteChannel(1) for j=1:npopulations]
bestSubPops = [Population(1) for j=1:npopulations]
hallOfFame = HallOfFame()
curmaxsize = 3
if warmupMaxsize == 0
curmaxsize = maxsize
end
for i=1:npopulations
future = @spawnat :any Population(npop, 3)
push!(allPops, future)
end
# # 2. Start the cycle on every process:
@sync for i=1:npopulations
@async allPops[i] = @spawnat :any run(fetch(allPops[i]), ncyclesperiteration, curmaxsize, verbosity=verbosity)
end
println("Started!")
cycles_complete = npopulations * niterations
curmaxsize += 1
last_print_time = time()
num_equations = 0.0
print_every_n_seconds = 5
equation_speed = Float32[]
for i=1:npopulations
# Start listening for each population to finish:
@async put!(channels[i], fetch(allPops[i]))
end
while cycles_complete > 0
@inbounds for i=1:npopulations
# Non-blocking check if a population is ready:
if isready(channels[i])
# Take the fetch operation from the channel since its ready
cur_pop = take!(channels[i])
bestSubPops[i] = bestSubPop(cur_pop, topn=topn)
#Try normal copy...
bestPops = Population([member for pop in bestSubPops for member in pop.members])
for member in cur_pop.members
size = countNodes(member.tree)
if member.score < hallOfFame.members[size].score
hallOfFame.members[size] = deepcopy(member)
hallOfFame.exists[size] = true
end
end
# Dominating pareto curve - must be better than all simpler equations
dominating = PopMember[]
open(hofFile, "w") do io
println(io,"Complexity|MSE|Equation")
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
if weighted
curMSE = MSE(evalTreeArray(member.tree), y, weights)
else
curMSE = MSE(evalTreeArray(member.tree), y)
end
numberSmallerAndBetter = 0
for i=1:(size-1)
if weighted
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights)
else
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y)
end
if (hallOfFame.exists[size] && curMSE > hofMSE)
numberSmallerAndBetter += 1
end
end
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
println(io, "$size|$(curMSE)|$(stringTree(member.tree))")
push!(dominating, member)
end
end
end
end
cp(hofFile, hofFile*".bkup", force=true)
# Try normal copy otherwise.
if migration
for k in rand(1:npop, round(Integer, npop*fractionReplaced))
to_copy = rand(1:size(bestPops.members)[1])
cur_pop.members[k] = PopMember(
copyNode(bestPops.members[to_copy].tree),
bestPops.members[to_copy].score)
end
end
if hofMigration && size(dominating)[1] > 0
for k in rand(1:npop, round(Integer, npop*fractionReplacedHof))
# Copy in case one gets used twice
to_copy = rand(1:size(dominating)[1])
cur_pop.members[k] = PopMember(
copyNode(dominating[to_copy].tree)
)
end
end
@async begin
allPops[i] = @spawnat :any let
tmp_pop = run(cur_pop, ncyclesperiteration, curmaxsize, verbosity=verbosity)
@inbounds @simd for j=1:tmp_pop.n
if rand() < 0.1
tmp_pop.members[j].tree = simplifyTree(tmp_pop.members[j].tree)
tmp_pop.members[j].tree = combineOperators(tmp_pop.members[j].tree)
if shouldOptimizeConstants
tmp_pop.members[j] = optimizeConstants(tmp_pop.members[j])
end
end
end
if shouldOptimizeConstants
#pass #(We already calculate full scores in the optimizer)
#TODO - not correct. only randomly calculate!
else
tmp_pop = finalizeScores(tmp_pop)
end
tmp_pop
end
put!(channels[i], fetch(allPops[i]))
end
cycles_complete -= 1
cycles_elapsed = npopulations * niterations - cycles_complete
if warmupMaxsize != 0 && cycles_elapsed % warmupMaxsize == 0
curmaxsize += 1
if curmaxsize > maxsize
curmaxsize = maxsize
end
end
num_equations += ncyclesperiteration * npop / 10.0
end
end
sleep(1e-3)
elapsed = time() - last_print_time
#Update if time has passed, and some new equations generated.
if elapsed > print_every_n_seconds && num_equations > 0.0
# Dominating pareto curve - must be better than all simpler equations
current_speed = num_equations/elapsed
average_over_m_measurements = 10 #for print_every...=5, this gives 50 second running average
push!(equation_speed, current_speed)
if length(equation_speed) > average_over_m_measurements
deleteat!(equation_speed, 1)
end
average_speed = sum(equation_speed)/length(equation_speed)
@printf("\n")
@printf("Cycles per second: %.3e\n", round(average_speed, sigdigits=3))
@printf("Hall of Fame:\n")
@printf("-----------------------------------------\n")
@printf("%-10s %-8s %-8s %-8s\n", "Complexity", "MSE", "Score", "Equation")
curMSE = baselineMSE
@printf("%-10d %-8.3e %-8.3e %-.f\n", 0, curMSE, 0f0, avgy)
lastMSE = curMSE
lastComplexity = 0
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
if weighted
curMSE = MSE(evalTreeArray(member.tree), y, weights)
else
curMSE = MSE(evalTreeArray(member.tree), y)
end
numberSmallerAndBetter = 0
for i=1:(size-1)
if weighted
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights)
else
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y)
end
if (hallOfFame.exists[size] && curMSE > hofMSE)
numberSmallerAndBetter += 1
end
end
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
delta_c = size - lastComplexity
delta_l_mse = log(curMSE/lastMSE)
score = convert(Float32, -delta_l_mse/delta_c)
@printf("%-10d %-8.3e %-8.3e %-s\n" , size, curMSE, score, stringTree(member.tree))
lastMSE = curMSE
lastComplexity = size
end
end
end
debug(verbosity, "")
last_print_time = time()
num_equations = 0.0
end
end
end