Spaces:
Running
Running
import os | |
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
from collections import namedtuple | |
import pathlib | |
import numpy as np | |
import pandas as pd | |
import sympy | |
from sympy import sympify, Symbol, lambdify | |
sympy_mappings = { | |
'div': lambda x, y : x/y, | |
'mult': lambda x, y : x*y, | |
'plus': lambda x, y : x + y, | |
'neg': lambda x : -x, | |
'pow': lambda x, y : sympy.sign(x)*sympy.Abs(x)**y, | |
'cos': lambda x : sympy.cos(x), | |
'sin': lambda x : sympy.sin(x), | |
'tan': lambda x : sympy.tan(x), | |
'cosh': lambda x : sympy.cosh(x), | |
'sinh': lambda x : sympy.sinh(x), | |
'tanh': lambda x : sympy.tanh(x), | |
'exp': lambda x : sympy.exp(x), | |
'acos': lambda x : sympy.acos(x), | |
'asin': lambda x : sympy.asin(x), | |
'atan': lambda x : sympy.atan(x), | |
'acosh':lambda x : sympy.acosh(x), | |
'asinh':lambda x : sympy.asinh(x), | |
'atanh':lambda x : sympy.atanh(x), | |
'abs': lambda x : sympy.Abs(x), | |
'mod': lambda x, y : sympy.Mod(x, y), | |
'erf': lambda x : sympy.erf(x), | |
'erfc': lambda x : sympy.erfc(x), | |
'logm': lambda x : sympy.log(sympy.Abs(x)), | |
'logm10':lambda x : sympy.log10(sympy.Abs(x)), | |
'logm2': lambda x : sympy.log2(sympy.Abs(x)), | |
'log1p': lambda x : sympy.log(x + 1), | |
'floor': lambda x : sympy.floor(x), | |
'ceil': lambda x : sympy.ceil(x), | |
'sign': lambda x : sympy.sign(x), | |
'round': lambda x : sympy.round(x), | |
} | |
def pysr(X=None, y=None, weights=None, | |
procs=4, | |
populations=None, | |
niterations=100, | |
ncyclesperiteration=300, | |
binary_operators=["plus", "mult"], | |
unary_operators=["cos", "exp", "sin"], | |
alpha=0.1, | |
annealing=True, | |
fractionReplaced=0.10, | |
fractionReplacedHof=0.10, | |
npop=1000, | |
parsimony=1e-4, | |
migration=True, | |
hofMigration=True, | |
shouldOptimizeConstants=True, | |
topn=10, | |
weightAddNode=1, | |
weightInsertNode=3, | |
weightDeleteNode=3, | |
weightDoNothing=1, | |
weightMutateConstant=10, | |
weightMutateOperator=1, | |
weightRandomize=1, | |
weightSimplify=0.01, | |
perturbationFactor=1.0, | |
nrestarts=3, | |
timeout=None, | |
extra_sympy_mappings={}, | |
equation_file='hall_of_fame.csv', | |
test='simple1', | |
verbosity=1e9, | |
maxsize=20, | |
fast_cycle=False, | |
maxdepth=None, | |
variable_names=[], | |
threads=None, #deprecated | |
julia_optimization=3, | |
): | |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i. | |
Note: most default parameters have been tuned over several example | |
equations, but you should adjust `threads`, `niterations`, | |
`binary_operators`, `unary_operators` to your requirements. | |
:param X: np.ndarray or pandas.DataFrame, 2D array. Rows are examples, | |
columns are features. If pandas DataFrame, the columns are used | |
for variable names (so make sure they don't contain spaces). | |
:param y: np.ndarray, 1D array. Rows are examples. | |
:param weights: np.ndarray, 1D array. Each row is how to weight the | |
mean-square-error loss on weights. | |
:param procs: int, Number of processes (=number of populations running). | |
:param populations: int, Number of populations running; by default=procs. | |
:param niterations: int, Number of iterations of the algorithm to run. The best | |
equations are printed, and migrate between populations, at the | |
end of each. | |
:param ncyclesperiteration: int, Number of total mutations to run, per 10 | |
samples of the population, per iteration. | |
:param binary_operators: list, List of strings giving the binary operators | |
in Julia's Base, or in `operator.jl`. | |
:param unary_operators: list, Same but for operators taking a single `Float32`. | |
:param alpha: float, Initial temperature. | |
:param annealing: bool, Whether to use annealing. You should (and it is default). | |
:param fractionReplaced: float, How much of population to replace with migrating | |
equations from other populations. | |
:param fractionReplacedHof: float, How much of population to replace with migrating | |
equations from hall of fame. | |
:param npop: int, Number of individuals in each population | |
:param parsimony: float, Multiplicative factor for how much to punish complexity. | |
:param migration: bool, Whether to migrate. | |
:param hofMigration: bool, Whether to have the hall of fame migrate. | |
:param shouldOptimizeConstants: bool, Whether to numerically optimize | |
constants (Nelder-Mead/Newton) at the end of each iteration. | |
:param topn: int, How many top individuals migrate from each population. | |
:param nrestarts: int, Number of times to restart the constant optimizer | |
:param perturbationFactor: float, Constants are perturbed by a max | |
factor of (perturbationFactor*T + 1). Either multiplied by this | |
or divided by this. | |
:param weightAddNode: float, Relative likelihood for mutation to add a node | |
:param weightInsertNode: float, Relative likelihood for mutation to insert a node | |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node | |
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual | |
:param weightMutateConstant: float, Relative likelihood for mutation to change | |
the constant slightly in a random direction. | |
:param weightMutateOperator: float, Relative likelihood for mutation to swap | |
an operator. | |
:param weightRandomize: float, Relative likelihood for mutation to completely | |
delete and then randomly generate the equation | |
:param weightSimplify: float, Relative likelihood for mutation to simplify | |
constant parts by evaluation | |
:param timeout: float, Time in seconds to timeout search | |
:param equation_file: str, Where to save the files (.csv separated by |) | |
:param test: str, What test to run, if X,y not passed. | |
:param maxsize: int, Max size of an equation. | |
:param maxdepth: int, Max depth of an equation. You can use both maxsize and maxdepth. | |
maxdepth is by default set to = maxsize, which means that it is redundant. | |
:param fast_cycle: bool, (experimental) - batch over population subsamples. This | |
is a slightly different algorithm than regularized evolution, but does cycles | |
15% faster. May be algorithmically less efficient. | |
:param variable_names: list, a list of names for the variables, other | |
than "x0", "x1", etc. | |
:param julia_optimization: int, Optimization level (0, 1, 2, 3) | |
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations | |
(as strings). | |
""" | |
if threads is not None: | |
raise ValueError("The threads kwarg is deprecated. Use procs.") | |
if maxdepth is None: | |
maxdepth = maxsize | |
if isinstance(X, pd.DataFrame): | |
variable_names = list(X.columns) | |
X = np.array(X) | |
# Check for potential errors before they happen | |
assert len(unary_operators) + len(binary_operators) > 0 | |
assert len(X.shape) == 2 | |
assert len(y.shape) == 1 | |
assert X.shape[0] == y.shape[0] | |
if weights is not None: | |
assert len(weights.shape) == 1 | |
assert X.shape[0] == weights.shape[0] | |
if len(variable_names) != 0: | |
assert len(variable_names) == X.shape[1] | |
if populations is None: | |
populations = procs | |
local_sympy_mappings = { | |
**extra_sympy_mappings, | |
**sympy_mappings | |
} | |
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}' | |
if isinstance(binary_operators, str): binary_operators = [binary_operators] | |
if isinstance(unary_operators, str): unary_operators = [unary_operators] | |
if X is None: | |
if test == 'simple1': | |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5" | |
elif test == 'simple2': | |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)" | |
elif test == 'simple3': | |
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)" | |
elif test == 'simple4': | |
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4" | |
elif test == 'simple5': | |
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)" | |
X = np.random.randn(100, 5)*3 | |
y = eval(eval_str) | |
print("Running on", eval_str) | |
pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia']) | |
def_hyperparams = "" | |
# Add pre-defined functions to Julia | |
for op_list in [binary_operators, unary_operators]: | |
for i in range(len(op_list)): | |
op = op_list[i] | |
if '(' not in op: | |
continue | |
def_hyperparams += op + "\n" | |
# Cut off from the first non-alphanumeric char: | |
first_non_char = [ | |
j for j in range(len(op)) | |
if not (op[j].isalpha() or op[j].isdigit())][0] | |
function_name = op[:first_non_char] | |
op_list[i] = function_name | |
def_hyperparams += f"""include("{pkg_directory}/operators.jl") | |
const binops = {'[' + ', '.join(binary_operators) + ']'} | |
const unaops = {'[' + ', '.join(unary_operators) + ']'} | |
const ns=10; | |
const parsimony = {parsimony:f}f0 | |
const alpha = {alpha:f}f0 | |
const maxsize = {maxsize:d} | |
const maxdepth = {maxdepth:d} | |
const fast_cycle = {'true' if fast_cycle else 'false'} | |
const migration = {'true' if migration else 'false'} | |
const hofMigration = {'true' if hofMigration else 'false'} | |
const fractionReplacedHof = {fractionReplacedHof}f0 | |
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'} | |
const hofFile = "{equation_file}" | |
const nprocs = {procs:d} | |
const npopulations = {populations:d} | |
const nrestarts = {nrestarts:d} | |
const perturbationFactor = {perturbationFactor:f}f0 | |
const annealing = {"true" if annealing else "false"} | |
const weighted = {"true" if weights is not None else "false"} | |
const useVarMap = {"false" if len(variable_names) == 0 else "true"} | |
const mutationWeights = [ | |
{weightMutateConstant:f}, | |
{weightMutateOperator:f}, | |
{weightAddNode:f}, | |
{weightInsertNode:f}, | |
{weightDeleteNode:f}, | |
{weightSimplify:f}, | |
{weightRandomize:f}, | |
{weightDoNothing:f} | |
] | |
""" | |
if X.shape[1] == 1: | |
X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])' | |
else: | |
X_str = str(X.tolist()).replace('],', '];').replace(',', '') | |
y_str = str(y.tolist()) | |
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})"""" | |
const y = convert(Array{Float32, 1}, """f"{y_str})" | |
if weights is not None: | |
weight_str = str(weights.tolist()) | |
def_datasets += """ | |
const weights = convert(Array{Float32, 1}, """f"{weight_str})" | |
if len(variable_names) != 0: | |
def_hyperparams += f""" | |
const varMap = {'["' + '", "'.join(variable_names) + '"]'}""" | |
with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f: | |
print(def_hyperparams, file=f) | |
with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f: | |
print(def_datasets, file=f) | |
with open(f'/tmp/.runfile_{rand_string}.jl', 'w') as f: | |
print(f'@everywhere include("/tmp/.hyperparams_{rand_string}.jl")', file=f) | |
print(f'@everywhere include("/tmp/.dataset_{rand_string}.jl")', file=f) | |
print(f'@everywhere include("{pkg_directory}/sr.jl")', file=f) | |
print(f'fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})', file=f) | |
print(f'rmprocs(nprocs)', file=f) | |
command = [ | |
f'julia -O{julia_optimization:d}', | |
f'-p {procs}', | |
f'/tmp/.runfile_{rand_string}.jl', | |
] | |
if timeout is not None: | |
command = [f'timeout {timeout}'] + command | |
cur_cmd = ' '.join(command) | |
print("Running on", cur_cmd) | |
os.system(cur_cmd) | |
try: | |
output = pd.read_csv(equation_file, sep="|") | |
except FileNotFoundError: | |
print("Couldn't find equation file!") | |
return pd.DataFrame() | |
scores = [] | |
lastMSE = None | |
lastComplexity = 0 | |
sympy_format = [] | |
lambda_format = [] | |
if len(variable_names) != 0: | |
sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(X.shape[1])] | |
else: | |
sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(X.shape[1])] | |
for i in range(len(output)): | |
eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings) | |
sympy_format.append(eqn) | |
lambda_format.append(lambdify(sympy_symbols, eqn)) | |
curMSE = output.loc[i, 'MSE'] | |
curComplexity = output.loc[i, 'Complexity'] | |
if lastMSE is None: | |
cur_score = 0.0 | |
else: | |
cur_score = np.log(curMSE/lastMSE)/(curComplexity - lastComplexity) | |
scores.append(cur_score) | |
lastMSE = curMSE | |
lastComplexity = curComplexity | |
output['score'] = np.array(scores) | |
output['sympy_format'] = sympy_format | |
output['lambda_format'] = lambda_format | |
return output[['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format']] | |