PySR / gui /app.py
MilesCranmer's picture
Try to install Julia within app
3c09196 unverified
raw
history blame
3.72 kB
import io
import gradio as gr
import sys
import os
import tempfile
import numpy as np
import pandas as pd
import traceback as tb
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
def greet(
file_obj: tempfile._TemporaryFileWrapper,
col_to_fit: str,
niterations: int,
binary_operators: list,
unary_operators: list,
):
if col_to_fit == "":
return (
empty_df,
"Please enter a column to predict!",
)
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
if file_obj is None:
return (
empty_df,
"Please upload a CSV file!",
)
niterations = int(niterations)
# Install Julia:
os.system(
"""if [ ! -d "~/julia" ]; then
wget https://julialang-s3.julialang.org/bin/linux/x64/1.7/julia-1.7.3-linux-x86_64.tar.gz
tar zxvf julia-1.7.3-linux-x86_64.tar.gz
mkdir ~/julia
mv julia-1.7.3-linux/* ~/julia/
fi""")
os.environ["PATH"] += ":~/julia/bin/"
# Need to install PySR in separate python instance:
os.system(
"""if [ ! -d "$HOME/.julia/environments/pysr-0.9.3" ]; then
export PATH="$PATH:$HOME/julia/bin/"
python -c 'import pysr; pysr.install()'
fi"""
)
import pysr
try:
from julia.api import JuliaInfo
info = JuliaInfo.load(julia="/usr/bin/julia")
from julia import Main as _Main
pysr.sr.Main = _Main
except Exception as e:
error_message = tb.format_exc()
return (
empty_df,
error_message,
)
from pysr import PySRRegressor
df = pd.read_csv(file_obj.name)
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
model = PySRRegressor(
update=False,
temp_equation_file=True,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
)
try:
model.fit(X, y)
# Catch all error:
except Exception as e:
error_traceback = tb.format_exc()
if "CalledProcessError" in error_traceback:
return (
empty_df,
"Could not initialize Julia. Error message:\n"
+ error_traceback,
)
else:
return (
empty_df,
"Failed due to error:\n" + error_traceback,
)
df = model.equations_[["equation", "loss", "complexity"]]
# Convert all columns to string type:
df = df.astype(str)
return df, "Successful."
def main():
demo = gr.Interface(
fn=greet,
description="PySR Demo",
inputs=[
gr.inputs.File(label="Upload a CSV File"),
gr.inputs.Textbox(label="Column to Predict", placeholder="y"),
gr.inputs.Slider(
minimum=1,
maximum=1000,
default=40,
label="Number of iterations",
),
gr.inputs.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
default=["+", "-", "*", "/"],
),
gr.inputs.CheckboxGroup(
choices=["sin", "cos", "exp", "log"],
label="Unary Operators",
default=[],
),
],
outputs=[
"dataframe",
gr.outputs.Textbox(label="Error Log"),
],
)
# Add file to the demo:
demo.launch()
if __name__ == "__main__":
main()