Spaces:
Sleeping
Sleeping
# Sum of square error between two arrays | |
function SSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
diff = (x - y) | |
return sum(diff .* diff) | |
end | |
function SSE(x::Nothing, y::Array{Float32})::Float32 | |
return 1f9 | |
end | |
# Sum of square error between two arrays, with weights | |
function SSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32 | |
diff = (x - y) | |
return sum(diff .* diff .* w) | |
end | |
function SSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32 | |
return Nothing | |
end | |
# Mean of square error between two arrays | |
function MSE(x::Nothing, y::Array{Float32})::Float32 | |
return 1f9 | |
end | |
# Mean of square error between two arrays | |
function MSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
return SSE(x, y)/size(x)[1] | |
end | |
# Mean of square error between two arrays | |
function MSE(x::Nothing, y::Array{Float32}, w::Array{Float32})::Float32 | |
return 1f9 | |
end | |
# Mean of square error between two arrays | |
function MSE(x::Array{Float32}, y::Array{Float32}, w::Array{Float32})::Float32 | |
return SSE(x, y, w)/sum(w) | |
end | |
if weighted | |
const avgy = sum(y .* weights)/sum(weights) | |
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy), weights) | |
else | |
const avgy = sum(y)/len | |
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy)) | |
end | |
# Score an equation | |
function scoreFunc(tree::Node)::Float32 | |
prediction = evalTreeArray(tree) | |
if prediction === nothing | |
return 1f9 | |
end | |
if weighted | |
mse = MSE(prediction, y, weights) | |
else | |
mse = MSE(prediction, y) | |
end | |
return mse / baselineMSE + countNodes(tree)*parsimony | |
end | |
# Score an equation with a small batch | |
function scoreFuncBatch(tree::Node)::Float32 | |
# batchSize | |
batch_idx = randperm(len)[1:batchSize] | |
batch_X = X[batch_idx, :] | |
prediction = evalTreeArray(tree, batch_X) | |
if prediction === nothing | |
return 1f9 | |
end | |
size_adjustment = 1f0 | |
batch_y = y[batch_idx] | |
if weighted | |
batch_w = weights[batch_idx] | |
mse = MSE(prediction, batch_y, batch_w) | |
size_adjustment = 1f0 * len / batchSize | |
else | |
mse = MSE(prediction, batch_y) | |
end | |
return size_adjustment * mse / baselineMSE + countNodes(tree)*parsimony | |
end | |