Spaces:
Running
Running
import os | |
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
from collections import namedtuple | |
import pathlib | |
import numpy as np | |
import pandas as pd | |
def eureqa(X=None, y=None, threads=4, parsimony=1e-3, alpha=10, | |
maxsize=20, migration=True, | |
hofMigration=True, fractionReplacedHof=0.1, | |
shouldOptimizeConstants=True, | |
binary_operators=["plus", "mult"], | |
unary_operators=["cos", "exp", "sin"], | |
niterations=20, npop=100, annealing=True, | |
ncyclesperiteration=5000, fractionReplaced=0.1, | |
topn=10, equation_file='hall_of_fame.csv', | |
test='simple1', | |
weightMutateConstant=4.0, | |
weightMutateOperator=0.5, | |
weightAddNode=0.5, | |
weightDeleteNode=0.5, | |
weightSimplify=0.05, | |
weightRandomize=0.25, | |
weightDoNothing=1.0, | |
): | |
""" Runs symbolic regression in Julia, to fit y given X. | |
Either provide a 2D numpy array for X, 1D array for y, or declare a test to run. | |
Arguments: | |
--threads THREADS Number of threads (default: 4) | |
--parsimony PARSIMONY | |
How much to punish complexity (default: 0.001) | |
--alpha ALPHA Scaling of temperature (default: 10) | |
--maxsize MAXSIZE Max size of equation (default: 20) | |
--niterations NITERATIONS | |
Number of total migration periods (default: 20) | |
--npop NPOP Number of members per population (default: 100) | |
--ncyclesperiteration NCYCLESPERITERATION | |
Number of evolutionary cycles per migration (default: | |
5000) | |
--topn TOPN How many best species to distribute from each | |
population (default: 10) | |
--fractionReplacedHof FRACTIONREPLACEDHOF | |
Fraction of population to replace with hall of fame | |
(default: 0.1) | |
--fractionReplaced FRACTIONREPLACED | |
Fraction of population to replace with best from other | |
populations (default: 0.1) | |
--migration MIGRATION | |
Whether to migrate (default: True) | |
--hofMigration HOFMIGRATION | |
Whether to have hall of fame migration (default: True) | |
--shouldOptimizeConstants SHOULDOPTIMIZECONSTANTS | |
Whether to use classical optimization on constants | |
before every migration (doesn't impact performance | |
that much) (default: True) | |
--annealing ANNEALING | |
Whether to use simulated annealing (default: True) | |
--equation_file EQUATION_FILE | |
File to dump best equations to (default: | |
hall_of_fame.csv) | |
--test TEST Which test to run (default: simple1) | |
--binary-operators BINARY_OPERATORS [BINARY_OPERATORS ...] | |
Binary operators. Make sure they are defined in | |
operators.jl (default: ['plus', 'mult']) | |
--unary-operators UNARY_OPERATORS | |
Unary operators. Make sure they are defined in | |
operators.jl (default: ['exp', 'sin', 'cos']) | |
Returns: | |
Pandas dataset listing (complexity, MSE, equation string) | |
""" | |
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}' | |
if isinstance(binary_operators, str): binary_operators = [binary_operators] | |
if isinstance(unary_operators, str): unary_operators = [unary_operators] | |
if X is None: | |
if test == 'simple1': | |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5" | |
elif test == 'simple2': | |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/np.abs(X[:, 0])" | |
elif test == 'simple3': | |
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)" | |
elif test == 'simple4': | |
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4" | |
elif test == 'simple5': | |
eval_str = "(np.exp(X[:, 3]) + 3)/(X[:, 1] + np.cos(X[:, 0]))" | |
X = np.random.randn(100, 5)*3 | |
y = eval(eval_str) | |
print("Running on", eval_str) | |
def_hyperparams = f""" | |
include("operators.jl") | |
const binops = {'[' + ', '.join(binary_operators) + ']'} | |
const unaops = {'[' + ', '.join(unary_operators) + ']'} | |
const ns=10; | |
const parsimony = {parsimony:f}f0 | |
const alpha = {alpha:f}f0 | |
const maxsize = {maxsize:d} | |
const migration = {'true' if migration else 'false'} | |
const hofMigration = {'true' if hofMigration else 'false'} | |
const fractionReplacedHof = {fractionReplacedHof}f0 | |
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'} | |
const hofFile = "{equation_file}" | |
const nthreads = {threads:d} | |
const mutationWeights = [ | |
{weightMutateConstant:f}, | |
{weightMutateOperator:f}, | |
{weightAddNode:f}, | |
{weightDeleteNode:f}, | |
{weightSimplify:f}, | |
{weightRandomize:f}, | |
{weightDoNothing:f} | |
] | |
""" | |
assert len(X.shape) == 2 | |
assert len(y.shape) == 1 | |
X_str = str(X.tolist()).replace('],', '];').replace(',', '') | |
y_str = str(y.tolist()) | |
def_datasets = """ | |
const X = convert(Array{Float32, 2}, """f"{X_str})"""" | |
const y = convert(Array{Float32, 1}, """f"{y_str})"""" | |
""" | |
starting_path = f'cd {pathlib.Path().absolute()}' | |
code_path = f'cd {pathlib.Path(__file__).parent.absolute()}' #Move to filepath of code | |
os.system(code_path) | |
with open(f'.hyperparams_{rand_string}.jl', 'w') as f: | |
print(def_hyperparams, file=f) | |
with open(f'.dataset_{rand_string}.jl', 'w') as f: | |
print(def_datasets, file=f) | |
command = [ | |
'julia -O3', | |
f'--threads {threads}', | |
'-e', | |
f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, 1e9), topn={topn:d})\'', | |
] | |
cur_cmd = ' '.join(command) | |
print("Running on", cur_cmd) | |
os.system(cur_cmd) | |
output = pd.read_csv(equation_file, sep="|") | |
os.system(starting_path) | |
return output | |
if __name__ == "__main__": | |
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--threads", type=int, default=4, help="Number of threads") | |
parser.add_argument("--parsimony", type=float, default=0.001, help="How much to punish complexity") | |
parser.add_argument("--alpha", type=int, default=10, help="Scaling of temperature") | |
parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation") | |
parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods") | |
parser.add_argument("--npop", type=int, default=100, help="Number of members per population") | |
parser.add_argument("--ncyclesperiteration", type=int, default=5000, help="Number of evolutionary cycles per migration") | |
parser.add_argument("--topn", type=int, default=10, help="How many best species to distribute from each population") | |
parser.add_argument("--fractionReplacedHof", type=float, default=0.1, help="Fraction of population to replace with hall of fame") | |
parser.add_argument("--fractionReplaced", type=float, default=0.1, help="Fraction of population to replace with best from other populations") | |
parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate") | |
parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration") | |
parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)") | |
parser.add_argument("--annealing", type=bool, default=True, help="Whether to use simulated annealing") | |
parser.add_argument("--equation_file", type=str, default='hall_of_fame.csv', help="File to dump best equations to") | |
parser.add_argument("--test", type=str, default='simple1', help="Which test to run") | |
parser.add_argument( | |
"--binary-operators", type=str, nargs="+", default=["plus", "mult"], | |
help="Binary operators. Make sure they are defined in operators.jl") | |
parser.add_argument( | |
"--unary-operators", type=str, nargs="+", default=["exp", "sin", "cos"], | |
help="Unary operators. Make sure they are defined in operators.jl") | |
args = vars(parser.parse_args()) #dict | |
eureqa(**args) | |