Spaces:
Running
Running
import os | |
import pickle as pkl | |
import tempfile | |
import traceback | |
import unittest | |
import warnings | |
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import sympy | |
from sklearn.utils.estimator_checks import check_estimator | |
from .. import PySRRegressor, install, jl | |
from ..export_latex import sympy2latex | |
from ..feature_selection import _handle_feature_selection, run_feature_selection | |
from ..julia_helpers import init_julia | |
from ..sr import _check_assertions, _process_constraints, idx_model_selection | |
from ..utils import _csv_filename_to_pkl_filename | |
from .params import ( | |
DEFAULT_NCYCLES, | |
DEFAULT_NITERATIONS, | |
DEFAULT_PARAMS, | |
DEFAULT_POPULATIONS, | |
) | |
class TestPipeline(unittest.TestCase): | |
def setUp(self): | |
# Using inspect, | |
# get default niterations from PySRRegressor, and double them: | |
self.default_test_kwargs = dict( | |
progress=False, | |
model_selection="accuracy", | |
niterations=DEFAULT_NITERATIONS * 2, | |
populations=DEFAULT_POPULATIONS * 2, | |
temp_equation_file=True, | |
) | |
self.rstate = np.random.RandomState(0) | |
self.X = self.rstate.randn(100, 5) | |
def test_linear_relation(self): | |
y = self.X[:, 0] | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
) | |
model.fit(self.X, y) | |
print(model.equations_) | |
self.assertLessEqual(model.get_best()["loss"], 1e-4) | |
def test_linear_relation_named(self): | |
y = self.X[:, 0] | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
) | |
model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"]) | |
self.assertIn("c1", model.equations_.iloc[-1]["equation"]) | |
def test_linear_relation_weighted_bumper(self): | |
y = self.X[:, 0] | |
weights = np.ones_like(y) | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1", | |
bumper=True, | |
) | |
model.fit(self.X, y, weights=weights) | |
print(model.equations_) | |
self.assertLessEqual(model.get_best()["loss"], 1e-4) | |
self.assertEqual( | |
jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.bumper), True | |
) | |
def test_multiprocessing_turbo_custom_objective(self): | |
rstate = np.random.RandomState(0) | |
y = self.X[:, 0] | |
y += rstate.randn(*y.shape) * 1e-4 | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
# Turbo needs to work with unsafe operators: | |
unary_operators=["sqrt"], | |
procs=2, | |
multithreading=False, | |
turbo=True, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-10 && complexity == 1", | |
loss_function=""" | |
function my_objective(tree::Node{T}, dataset::Dataset{T}, options::Options) where T | |
prediction, flag = eval_tree_array(tree, dataset.X, options) | |
!flag && return T(Inf) | |
abs3(x) = abs(x) ^ 3 | |
return sum(abs3, prediction .- dataset.y) / length(prediction) | |
end | |
""", | |
) | |
model.fit(self.X, y) | |
print(model.equations_) | |
best_loss = model.equations_.iloc[-1]["loss"] | |
self.assertLessEqual(best_loss, 1e-10) | |
self.assertGreaterEqual(best_loss, 0.0) | |
# Test options stored: | |
self.assertEqual( | |
jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), True | |
) | |
def test_multiline_seval(self): | |
# The user should be able to run multiple things in a single seval call: | |
num = jl.seval( | |
""" | |
function my_new_objective(x) | |
x^2 | |
end | |
1.5 | |
""" | |
) | |
self.assertEqual(num, 1.5) | |
def test_high_precision_search_custom_loss(self): | |
y = 1.23456789 * self.X[:, 0] | |
model = PySRRegressor( | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", | |
elementwise_loss="my_loss(prediction, target) = (prediction - target)^2", | |
precision=64, | |
parsimony=0.01, | |
warm_start=True, | |
) | |
model.fit(self.X, y) | |
# We should have that the model state is now a Float64 hof: | |
test_state = model.raw_julia_state_ | |
self.assertTrue(jl.typeof(test_state[1]).parameters[1] == jl.Float64) | |
# Test options stored: | |
self.assertEqual( | |
jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), False | |
) | |
def test_multioutput_custom_operator_quiet_custom_complexity(self): | |
y = self.X[:, [0, 1]] ** 2 | |
model = PySRRegressor( | |
unary_operators=["square_op(x) = x^2"], | |
extra_sympy_mappings={"square_op": lambda x: x**2}, | |
complexity_of_operators={"square_op": 2, "plus": 1}, | |
binary_operators=["plus"], | |
verbosity=0, | |
**self.default_test_kwargs, | |
procs=0, | |
# Test custom operators with turbo: | |
turbo=True, | |
# Test custom operators with constraints: | |
nested_constraints={"square_op": {"square_op": 3}}, | |
constraints={"square_op": 10}, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", | |
) | |
model.fit(self.X, y) | |
equations = model.equations_ | |
print(equations) | |
self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"]) | |
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4) | |
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4) | |
test_y1 = model.predict(self.X) | |
test_y2 = model.predict(self.X, index=[-1, -1]) | |
mse1 = np.average((test_y1 - y) ** 2) | |
mse2 = np.average((test_y2 - y) ** 2) | |
self.assertLessEqual(mse1, 1e-4) | |
self.assertLessEqual(mse2, 1e-4) | |
def test_multioutput_weighted_with_callable_temp_equation(self): | |
X = self.X.copy() | |
y = X[:, [0, 1]] ** 2 | |
w = self.rstate.rand(*y.shape) | |
w[w < 0.5] = 0.0 | |
w[w >= 0.5] = 1.0 | |
# Double equation when weights are 0: | |
y = (2 - w) * y | |
# Thus, pysr needs to use the weights to find the right equation! | |
model = PySRRegressor( | |
unary_operators=["sq(x) = x^2"], | |
binary_operators=["plus"], | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
delete_tempfiles=False, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2", | |
) | |
model.fit(X.copy(), y, weights=w) | |
# These tests are flaky, so don't fail test: | |
try: | |
np.testing.assert_almost_equal( | |
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=3 | |
) | |
except AssertionError: | |
print("Error in test_multioutput_weighted_with_callable_temp_equation") | |
print("Model equations: ", model.sympy()[0]) | |
print("True equation: x0^2") | |
try: | |
np.testing.assert_almost_equal( | |
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=3 | |
) | |
except AssertionError: | |
print("Error in test_multioutput_weighted_with_callable_temp_equation") | |
print("Model equations: ", model.sympy()[1]) | |
print("True equation: x1^2") | |
def test_complex_equations_anonymous_stop(self): | |
X = self.rstate.randn(100, 3) + 1j * self.rstate.randn(100, 3) | |
y = (2 + 1j) * np.cos(X[:, 0] * (0.5 - 0.3j)) | |
model = PySRRegressor( | |
binary_operators=["+", "-", "*"], | |
unary_operators=["cos"], | |
**self.default_test_kwargs, | |
early_stop_condition="(loss, complexity) -> loss <= 1e-4 && complexity <= 6", | |
) | |
model.niterations = DEFAULT_NITERATIONS * 10 | |
model.fit(X, y) | |
test_y = model.predict(X) | |
self.assertTrue(np.issubdtype(test_y.dtype, np.complexfloating)) | |
self.assertLessEqual(np.average(np.abs(test_y - y) ** 2), 1e-4) | |
def test_empty_operators_single_input_warm_start(self): | |
X = self.rstate.randn(100, 1) | |
y = X[:, 0] + 3.0 | |
regressor = PySRRegressor( | |
unary_operators=[], | |
binary_operators=["plus"], | |
**self.default_test_kwargs, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3", | |
) | |
self.assertTrue("None" in regressor.__repr__()) | |
regressor.fit(X, y) | |
self.assertTrue("None" not in regressor.__repr__()) | |
self.assertTrue(">>>>" in regressor.__repr__()) | |
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
# Test if repeated fit works: | |
regressor.set_params( | |
niterations=1, | |
ncycles_per_iteration=2, | |
warm_start=True, | |
early_stop_condition=None, | |
) | |
# We should have that the model state is now a Float32 hof: | |
test_state = regressor.julia_state_ | |
self.assertTrue( | |
jl.first(jl.typeof(jl.last(test_state)).parameters) == jl.Float32 | |
) | |
# This should exit almost immediately, and use the old equations | |
regressor.fit(X, y) | |
self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
# Tweak model selection: | |
regressor.set_params(model_selection="best") | |
self.assertEqual(regressor.get_params()["model_selection"], "best") | |
self.assertTrue("None" not in regressor.__repr__()) | |
self.assertTrue(">>>>" in regressor.__repr__()) | |
def test_warm_start_set_at_init(self): | |
# Smoke test for bug where warm_start=True is set at init | |
y = self.X[:, 0] | |
regressor = PySRRegressor(warm_start=True, max_evals=10) | |
regressor.fit(self.X, y) | |
def test_noisy(self): | |
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05 | |
model = PySRRegressor( | |
# Test that passing a single operator works: | |
unary_operators="sq(x) = x^2", | |
binary_operators="plus", | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
denoise=True, | |
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2", | |
) | |
# We expect in this case that the "best" | |
# equation should be the right one: | |
model.set_params(model_selection="best") | |
# Also try without a temp equation file: | |
model.set_params(temp_equation_file=False) | |
model.fit(self.X, y) | |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) | |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) | |
def test_pandas_resample_with_nested_constraints(self): | |
X = pd.DataFrame( | |
{ | |
"T": self.rstate.randn(500), | |
"x": self.rstate.randn(500), | |
"unused_feature": self.rstate.randn(500), | |
} | |
) | |
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837) | |
y = true_fn(X) | |
noise = self.rstate.randn(500) * 0.01 | |
y = y + noise | |
# We also test y as a pandas array: | |
y = pd.Series(y) | |
# Resampled array is a different order of features: | |
Xresampled = pd.DataFrame( | |
{ | |
"unused_feature": self.rstate.randn(100), | |
"x": self.rstate.randn(100), | |
"T": self.rstate.randn(100), | |
} | |
) | |
model = PySRRegressor( | |
unary_operators=[], | |
binary_operators=["+", "*", "/", "-"], | |
**self.default_test_kwargs, | |
denoise=True, | |
nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}}, | |
early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7", | |
) | |
model.fit(X, y, Xresampled=Xresampled) | |
self.assertNotIn("unused_feature", model.latex()) | |
self.assertIn("T", model.latex()) | |
self.assertIn("x", model.latex()) | |
self.assertLessEqual(model.get_best()["loss"], 1e-1) | |
fn = model.get_best()["lambda_format"] | |
X2 = pd.DataFrame( | |
{ | |
"T": self.rstate.randn(100), | |
"unused_feature": self.rstate.randn(100), | |
"x": self.rstate.randn(100), | |
} | |
) | |
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1) | |
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1) | |
def test_high_dim_selection_early_stop(self): | |
X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)}) | |
Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)}) | |
y = X["k7"] ** 2 + np.cos(X["k9"]) * 3 | |
model = PySRRegressor( | |
unary_operators=["cos"], | |
select_k_features=3, | |
early_stop_condition=1e-4, # Stop once most accurate equation is <1e-4 MSE | |
maxsize=12, | |
**self.default_test_kwargs, | |
) | |
model.set_params(model_selection="accuracy") | |
model.fit(X, y, Xresampled=Xresampled) | |
self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4) | |
# Again, but with numpy arrays: | |
model.fit(X.values, y.values, Xresampled=Xresampled.values) | |
self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4) | |
def test_load_model(self): | |
"""See if we can load a ran model from the equation file.""" | |
csv_file_data = """ | |
Complexity,Loss,Equation | |
1,0.19951081,"1.9762075" | |
3,0.12717344,"(f0 + 1.4724599)" | |
4,0.104823045,"pow_abs(2.2683423, cos(f3))\"""" | |
# Strip the indents: | |
csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")]) | |
for from_backup in [False, True]: | |
rand_dir = Path(tempfile.mkdtemp()) | |
equation_filename = str(rand_dir / "equation.csv") | |
with open(equation_filename + (".bkup" if from_backup else ""), "w") as f: | |
f.write(csv_file_data) | |
model = PySRRegressor.from_file( | |
equation_filename, | |
n_features_in=5, | |
feature_names_in=["f0", "f1", "f2", "f3", "f4"], | |
binary_operators=["+", "*", "/", "-", "^"], | |
unary_operators=["cos"], | |
) | |
X = self.rstate.rand(100, 5) | |
y_truth = 2.2683423 ** np.cos(X[:, 3]) | |
y_test = model.predict(X, 2) | |
np.testing.assert_allclose(y_truth, y_test) | |
def test_load_model_simple(self): | |
# Test that we can simply load a model from its equation file. | |
y = self.X[:, [0, 1]] ** 2 | |
model = PySRRegressor( | |
# Test that passing a single operator works: | |
unary_operators="sq(x) = x^2", | |
binary_operators="plus", | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
denoise=True, | |
early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2", | |
) | |
rand_dir = Path(tempfile.mkdtemp()) | |
equation_file = rand_dir / "equations.csv" | |
model.set_params(temp_equation_file=False) | |
model.set_params(equation_file=equation_file) | |
model.fit(self.X, y) | |
# lambda functions are removed from the pickling, so we need | |
# to pass it during the loading: | |
model2 = PySRRegressor.from_file( | |
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2} | |
) | |
np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X)) | |
# Try again, but using only the pickle file: | |
for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]: | |
if os.path.exists(file_to_delete): | |
os.remove(file_to_delete) | |
pickle_file = rand_dir / "equations.pkl" | |
model3 = PySRRegressor.from_file( | |
model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2} | |
) | |
np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X)) | |
def manually_create_model(equations, feature_names=None): | |
if feature_names is None: | |
feature_names = ["x0", "x1"] | |
model = PySRRegressor( | |
progress=False, | |
niterations=1, | |
extra_sympy_mappings={}, | |
output_jax_format=False, | |
model_selection="accuracy", | |
equation_file="equation_file.csv", | |
) | |
# Set up internal parameters as if it had been fitted: | |
if isinstance(equations, list): | |
# Multi-output. | |
model.equation_file_ = "equation_file.csv" | |
model.nout_ = len(equations) | |
model.selection_mask_ = None | |
model.feature_names_in_ = np.array(feature_names, dtype=object) | |
for i in range(model.nout_): | |
equations[i]["complexity loss equation".split(" ")].to_csv( | |
f"equation_file.csv.out{i+1}.bkup" | |
) | |
else: | |
model.equation_file_ = "equation_file.csv" | |
model.nout_ = 1 | |
model.selection_mask_ = None | |
model.feature_names_in_ = np.array(feature_names, dtype=object) | |
equations["complexity loss equation".split(" ")].to_csv( | |
"equation_file.csv.bkup" | |
) | |
model.refresh() | |
return model | |
class TestBest(unittest.TestCase): | |
def setUp(self): | |
self.rstate = np.random.RandomState(0) | |
self.X = self.rstate.randn(10, 2) | |
self.y = np.cos(self.X[:, 0]) ** 2 | |
equations = pd.DataFrame( | |
{ | |
"equation": ["1.0", "cos(x0)", "square(cos(x0))"], | |
"loss": [1.0, 0.1, 1e-5], | |
"complexity": [1, 2, 3], | |
} | |
) | |
self.model = manually_create_model(equations) | |
self.equations_ = self.model.equations_ | |
def test_best(self): | |
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2) | |
def test_index_selection(self): | |
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0"))) | |
self.assertEqual(self.model.sympy(0), 1.0) | |
def test_best_tex(self): | |
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}") | |
def test_best_lambda(self): | |
X = self.X | |
y = self.y | |
for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]: | |
np.testing.assert_almost_equal(f(X), y, decimal=3) | |
def test_all_selection_strategies(self): | |
equations = pd.DataFrame( | |
dict( | |
loss=[1.0, 0.1, 0.01, 0.001 * 1.4, 0.001], | |
score=[0.5, 1.0, 0.5, 0.5, 0.3], | |
) | |
) | |
idx_accuracy = idx_model_selection(equations, "accuracy") | |
self.assertEqual(idx_accuracy, 4) | |
idx_best = idx_model_selection(equations, "best") | |
self.assertEqual(idx_best, 3) | |
idx_score = idx_model_selection(equations, "score") | |
self.assertEqual(idx_score, 1) | |
class TestFeatureSelection(unittest.TestCase): | |
def setUp(self): | |
self.rstate = np.random.RandomState(0) | |
def test_feature_selection(self): | |
X = self.rstate.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
selected = run_feature_selection(X, y, select_k_features=2) | |
self.assertEqual(sorted(selected), [2, 3]) | |
def test_feature_selection_handler(self): | |
X = self.rstate.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
var_names = [f"x{i}" for i in range(5)] | |
selected_X, selection = _handle_feature_selection( | |
X, | |
select_k_features=2, | |
variable_names=var_names, | |
y=y, | |
) | |
self.assertTrue((2 in selection) and (3 in selection)) | |
selected_var_names = [var_names[i] for i in selection] | |
self.assertEqual(set(selected_var_names), set("x2 x3".split(" "))) | |
np.testing.assert_array_equal( | |
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1) | |
) | |
class TestMiscellaneous(unittest.TestCase): | |
"""Test miscellaneous functions.""" | |
def test_csv_to_pkl_conversion(self): | |
"""Test that csv filename to pkl filename works as expected.""" | |
tmpdir = Path(tempfile.mkdtemp()) | |
equation_file = tmpdir / "equations.389479384.28378374.csv" | |
expected_pkl_file = tmpdir / "equations.389479384.28378374.pkl" | |
# First, test inputting the paths: | |
test_pkl_file = _csv_filename_to_pkl_filename(equation_file) | |
self.assertEqual(test_pkl_file, str(expected_pkl_file)) | |
# Next, test inputting the strings. | |
test_pkl_file = _csv_filename_to_pkl_filename(str(equation_file)) | |
self.assertEqual(test_pkl_file, str(expected_pkl_file)) | |
def test_deprecation(self): | |
"""Ensure that deprecation works as expected. | |
This should give a warning, and sets the correct value. | |
""" | |
with self.assertWarns(FutureWarning): | |
model = PySRRegressor(fractionReplaced=0.2) | |
# This is a deprecated parameter, so we should get a warning. | |
# The correct value should be set: | |
self.assertEqual(model.fraction_replaced, 0.2) | |
def test_deprecated_functions(self): | |
with self.assertWarns(FutureWarning): | |
install() | |
_jl = None | |
with self.assertWarns(FutureWarning): | |
_jl = init_julia() | |
self.assertEqual(_jl, jl) | |
def test_power_law_warning(self): | |
"""Ensure that a warning is given for a power law operator.""" | |
with self.assertWarns(UserWarning): | |
_process_constraints(["^"], [], {}) | |
def test_size_warning(self): | |
"""Ensure that a warning is given for a large input size.""" | |
model = PySRRegressor() | |
X = np.random.randn(10001, 2) | |
y = np.random.randn(10001) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with self.assertRaises(Exception) as context: | |
model.fit(X, y) | |
self.assertIn("more than 10,000", str(context.exception)) | |
def test_feature_warning(self): | |
"""Ensure that a warning is given for large number of features.""" | |
model = PySRRegressor() | |
X = np.random.randn(100, 10) | |
y = np.random.randn(100) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with self.assertRaises(Exception) as context: | |
model.fit(X, y) | |
self.assertIn("with 10 features or more", str(context.exception)) | |
def test_deterministic_warnings(self): | |
"""Ensure that warnings are given for determinism""" | |
model = PySRRegressor(random_state=0) | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100) | |
with warnings.catch_warnings(): | |
warnings.simplefilter("error") | |
with self.assertRaises(Exception) as context: | |
model.fit(X, y) | |
self.assertIn("`deterministic`", str(context.exception)) | |
def test_deterministic_errors(self): | |
"""Setting deterministic without random_state should error""" | |
model = PySRRegressor(deterministic=True) | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100) | |
with self.assertRaises(ValueError): | |
model.fit(X, y) | |
def test_extra_sympy_mappings_undefined(self): | |
"""extra_sympy_mappings=None errors for custom operators""" | |
model = PySRRegressor(unary_operators=["square2(x) = x^2"]) | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100) | |
with self.assertRaises(ValueError): | |
model.fit(X, y) | |
def test_sympy_function_fails_as_variable(self): | |
model = PySRRegressor() | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100) | |
with self.assertRaises(ValueError) as cm: | |
model.fit(X, y, variable_names=["x1", "N"]) | |
self.assertIn("Variable name", str(cm.exception)) | |
def test_bad_variable_names_fail(self): | |
model = PySRRegressor() | |
X = np.random.randn(100, 1) | |
y = np.random.randn(100) | |
with self.assertRaises(ValueError) as cm: | |
model.fit(X, y, variable_names=["Tr(Tij)"]) | |
self.assertIn("Invalid variable name", str(cm.exception)) | |
with self.assertRaises(ValueError) as cm: | |
model.fit(X, y, variable_names=["f{c}"]) | |
self.assertIn("Invalid variable name", str(cm.exception)) | |
def test_bad_kwargs(self): | |
bad_kwargs = [ | |
dict( | |
kwargs=dict( | |
elementwise_loss="g(x, y) = 0.0", loss_function="f(*args) = 0.0" | |
), | |
error=ValueError, | |
), | |
dict( | |
kwargs=dict(maxsize=3), | |
error=ValueError, | |
), | |
dict( | |
kwargs=dict(tournament_selection_n=10, population_size=3), | |
error=ValueError, | |
), | |
dict( | |
kwargs=dict(optimizer_algorithm="COBYLA"), | |
error=NotImplementedError, | |
), | |
dict( | |
kwargs=dict( | |
constraints={ | |
"+": (3, 5), | |
} | |
), | |
error=NotImplementedError, | |
), | |
dict( | |
kwargs=dict(binary_operators=["α(x, y) = x - y"]), | |
error=ValueError, | |
), | |
dict( | |
kwargs=dict(model_selection="unknown"), | |
error=NotImplementedError, | |
), | |
] | |
for opt in bad_kwargs: | |
model = PySRRegressor(**opt["kwargs"], niterations=1) | |
with self.assertRaises(opt["error"]): | |
model.fit([[1]], [1]) | |
model.get_best() | |
print("Failed", opt["kwargs"]) | |
def test_pickle_with_temp_equation_file(self): | |
"""If we have a temporary equation file, unpickle the estimator.""" | |
model = PySRRegressor( | |
populations=int(1 + DEFAULT_POPULATIONS / 5), | |
temp_equation_file=True, | |
procs=0, | |
multithreading=False, | |
) | |
nout = 3 | |
X = np.random.randn(100, 2) | |
y = np.random.randn(100, nout) | |
model.fit(X, y) | |
contents = model.equation_file_contents_.copy() | |
y_predictions = model.predict(X) | |
equation_file_base = model.equation_file_ | |
for i in range(1, nout + 1): | |
assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup") | |
with tempfile.NamedTemporaryFile() as pickle_file: | |
pkl.dump(model, pickle_file) | |
pickle_file.seek(0) | |
model2 = pkl.load(pickle_file) | |
contents2 = model2.equation_file_contents_ | |
cols_to_check = ["equation", "loss", "complexity"] | |
for frame1, frame2 in zip(contents, contents2): | |
pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check]) | |
y_predictions2 = model2.predict(X) | |
np.testing.assert_array_equal(y_predictions, y_predictions2) | |
def test_scikit_learn_compatibility(self): | |
"""Test PySRRegressor compatibility with scikit-learn.""" | |
model = PySRRegressor( | |
niterations=int(1 + DEFAULT_NITERATIONS / 10), | |
populations=int(1 + DEFAULT_POPULATIONS / 3), | |
ncycles_per_iteration=int(2 + DEFAULT_NCYCLES / 10), | |
verbosity=0, | |
progress=False, | |
random_state=0, | |
deterministic=True, # Deterministic as tests require this. | |
procs=0, | |
multithreading=False, | |
warm_start=False, | |
temp_equation_file=True, | |
) # Return early. | |
check_generator = check_estimator(model, generate_only=True) | |
exception_messages = [] | |
for _, check in check_generator: | |
if check.func.__name__ == "check_complex_data": | |
# We can use complex data, so avoid this check. | |
continue | |
try: | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
check(model) | |
print("Passed", check.func.__name__) | |
except Exception: | |
error_message = str(traceback.format_exc()) | |
exception_messages.append( | |
f"{check.func.__name__}:\n" + error_message + "\n" | |
) | |
print("Failed", check.func.__name__, "with:") | |
# Add a leading tab to error message, which | |
# might be multi-line: | |
print("\n".join([(" " * 4) + row for row in error_message.split("\n")])) | |
# If any checks failed don't let the test pass. | |
self.assertEqual(len(exception_messages), 0) | |
def test_param_groupings(self): | |
"""Test that param_groupings are complete""" | |
param_groupings_file = Path(__file__).parent.parent / "param_groupings.yml" | |
if not param_groupings_file.exists(): | |
return | |
# Read the file, discarding lines ending in ":", | |
# and removing leading "\s*-\s*": | |
params = [] | |
with open(param_groupings_file, "r") as f: | |
for line in f.readlines(): | |
if line.strip().endswith(":"): | |
continue | |
if line.strip().startswith("-"): | |
params.append(line.strip()[1:].strip()) | |
regressor_params = [ | |
p for p in DEFAULT_PARAMS.keys() if p not in ["self", "kwargs"] | |
] | |
# Check the sets are equal: | |
self.assertSetEqual(set(params), set(regressor_params)) | |
TRUE_PREAMBLE = "\n".join( | |
[ | |
r"\usepackage{breqn}", | |
r"\usepackage{booktabs}", | |
"", | |
"...", | |
"", | |
] | |
) | |
class TestLaTeXTable(unittest.TestCase): | |
def setUp(self): | |
equations = pd.DataFrame( | |
dict( | |
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"], | |
loss=[1.052, 0.02315, 1.12347e-15], | |
complexity=[1, 2, 8], | |
) | |
) | |
self.model = manually_create_model(equations) | |
self.maxDiff = None | |
def create_true_latex(self, middle_part, include_score=False): | |
if include_score: | |
true_latex_table_str = r""" | |
\begin{table}[h] | |
\begin{center} | |
\begin{tabular}{@{}cccc@{}} | |
\toprule | |
Equation & Complexity & Loss & Score \\ | |
\midrule""" | |
else: | |
true_latex_table_str = r""" | |
\begin{table}[h] | |
\begin{center} | |
\begin{tabular}{@{}ccc@{}} | |
\toprule | |
Equation & Complexity & Loss \\ | |
\midrule""" | |
true_latex_table_str += middle_part | |
true_latex_table_str += r"""\bottomrule | |
\end{tabular} | |
\end{center} | |
\end{table} | |
""" | |
# First, remove empty lines: | |
true_latex_table_str = "\n".join( | |
[line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0] | |
) | |
return true_latex_table_str.strip() | |
def test_simple_table(self): | |
latex_table_str = self.model.latex_table( | |
columns=["equation", "complexity", "loss"] | |
) | |
middle_part = r""" | |
$y = x_{0}$ & $1$ & $1.05$ \\ | |
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\ | |
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\ | |
""" | |
true_latex_table_str = ( | |
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part) | |
) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
def test_other_precision(self): | |
latex_table_str = self.model.latex_table( | |
precision=5, columns=["equation", "complexity", "loss"] | |
) | |
middle_part = r""" | |
$y = x_{0}$ & $1$ & $1.0520$ \\ | |
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\ | |
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\ | |
""" | |
true_latex_table_str = ( | |
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part) | |
) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
def test_include_score(self): | |
latex_table_str = self.model.latex_table() | |
middle_part = r""" | |
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\ | |
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\ | |
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\ | |
""" | |
true_latex_table_str = ( | |
TRUE_PREAMBLE | |
+ "\n" | |
+ self.create_true_latex(middle_part, include_score=True) | |
) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
def test_last_equation(self): | |
latex_table_str = self.model.latex_table( | |
indices=[2], columns=["equation", "complexity", "loss"] | |
) | |
middle_part = r""" | |
$y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\ | |
""" | |
true_latex_table_str = ( | |
TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part) | |
) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
def test_multi_output(self): | |
equations1 = pd.DataFrame( | |
dict( | |
equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"], | |
loss=[1.052, 0.02315, 1.12347e-15], | |
complexity=[1, 2, 8], | |
) | |
) | |
equations2 = pd.DataFrame( | |
dict( | |
equation=["x1", "cos(x1)", "x0 * x0 * x1"], | |
loss=[1.32, 0.052, 2e-15], | |
complexity=[1, 2, 5], | |
) | |
) | |
equations = [equations1, equations2] | |
model = manually_create_model(equations) | |
middle_part_1 = r""" | |
$y_{0} = x_{0}$ & $1$ & $1.05$ & $0.0$ \\ | |
$y_{0} = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\ | |
$y_{0} = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\ | |
""" | |
middle_part_2 = r""" | |
$y_{1} = x_{1}$ & $1$ & $1.32$ & $0.0$ \\ | |
$y_{1} = \cos{\left(x_{1} \right)}$ & $2$ & $0.0520$ & $3.23$ \\ | |
$y_{1} = x_{0}^{2} x_{1}$ & $5$ & $2.00 \cdot 10^{-15}$ & $10.3$ \\ | |
""" | |
true_latex_table_str = "\n\n".join( | |
self.create_true_latex(part, include_score=True) | |
for part in [middle_part_1, middle_part_2] | |
) | |
true_latex_table_str = TRUE_PREAMBLE + "\n" + true_latex_table_str | |
latex_table_str = model.latex_table() | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
def test_latex_float_precision(self): | |
"""Test that we can print latex expressions with custom precision""" | |
expr = sympy.Float(4583.4485748, dps=50) | |
self.assertEqual(sympy2latex(expr, prec=6), r"4583.45") | |
self.assertEqual(sympy2latex(expr, prec=5), r"4583.4") | |
self.assertEqual(sympy2latex(expr, prec=4), r"4583.") | |
self.assertEqual(sympy2latex(expr, prec=3), r"4.58 \cdot 10^{3}") | |
self.assertEqual(sympy2latex(expr, prec=2), r"4.6 \cdot 10^{3}") | |
# Multiple numbers: | |
x = sympy.Symbol("x") | |
expr = x * 3232.324857384 - 1.4857485e-10 | |
self.assertEqual( | |
sympy2latex(expr, prec=2), r"3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}" | |
) | |
self.assertEqual( | |
sympy2latex(expr, prec=3), r"3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}" | |
) | |
self.assertEqual( | |
sympy2latex(expr, prec=8), r"3232.3249 x - 1.4857485 \cdot 10^{-10}" | |
) | |
def test_latex_break_long_equation(self): | |
"""Test that we can break a long equation inside the table""" | |
long_equation = """ | |
- cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0 | |
+ 5.2 * sin(0.3256 * sin(x2) - 2.6 * x0) + x0 * x0 * x0 * x0 * x0 | |
+ cos(cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0) | |
""" | |
long_equation = "".join(long_equation.split("\n")).strip() | |
equations = pd.DataFrame( | |
dict( | |
equation=["x0", "cos(x0)", long_equation], | |
loss=[1.052, 0.02315, 1.12347e-15], | |
complexity=[1, 2, 30], | |
) | |
) | |
model = manually_create_model(equations) | |
latex_table_str = model.latex_table() | |
middle_part = r""" | |
$y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\ | |
$y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\ | |
\begin{minipage}{0.8\linewidth} \vspace{-1em} \begin{dmath*} y = x_{0}^{5} + x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} - 5.20 \sin{\left(2.60 x_{0} - 0.326 \sin{\left(x_{2} \right)} \right)} - \cos{\left(x_{0} x_{1} \right)} + \cos{\left(x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} + \cos{\left(x_{0} x_{1} \right)} \right)} \end{dmath*} \end{minipage} & $30$ & $1.12 \cdot 10^{-15}$ & $1.09$ \\ | |
""" | |
true_latex_table_str = ( | |
TRUE_PREAMBLE | |
+ "\n" | |
+ self.create_true_latex(middle_part, include_score=True) | |
) | |
self.assertEqual(latex_table_str, true_latex_table_str) | |
class TestDimensionalConstraints(unittest.TestCase): | |
def setUp(self): | |
self.default_test_kwargs = dict( | |
progress=False, | |
model_selection="accuracy", | |
niterations=DEFAULT_NITERATIONS * 2, | |
populations=DEFAULT_POPULATIONS * 2, | |
temp_equation_file=True, | |
) | |
self.rstate = np.random.RandomState(0) | |
self.X = self.rstate.randn(100, 5) | |
def test_dimensional_constraints(self): | |
y = np.cos(self.X[:, [0, 1]]) | |
model = PySRRegressor( | |
binary_operators=[ | |
"my_add(x, y) = x + y", | |
"my_sub(x, y) = x - y", | |
"my_mul(x, y) = x * y", | |
], | |
unary_operators=["my_cos(x) = cos(x)"], | |
**self.default_test_kwargs, | |
early_stop_condition=1e-8, | |
select_k_features=3, | |
extra_sympy_mappings={ | |
"my_cos": sympy.cos, | |
"my_add": lambda x, y: x + y, | |
"my_sub": lambda x, y: x - y, | |
"my_mul": lambda x, y: x * y, | |
}, | |
) | |
model.fit(self.X, y, X_units=["m", "m", "m", "m", "m"], y_units=["m", "m"]) | |
# The best expression should have complexity larger than just 2: | |
for i in range(2): | |
self.assertGreater(model.get_best()[i]["complexity"], 2) | |
self.assertLess(model.get_best()[i]["loss"], 1e-6) | |
simple_eqs = model.equations_[i].query("complexity <= 2") | |
self.assertTrue(len(simple_eqs) == 0 or simple_eqs.loss.min() > 1e-6) | |
def test_unit_checks(self): | |
"""This just checks the number of units passed""" | |
use_custom_variable_names = False | |
variable_names = None | |
weights = None | |
args = (use_custom_variable_names, variable_names, weights) | |
valid_units = [ | |
(np.ones((10, 2)), np.ones(10), ["m/s", "s"], "m"), | |
(np.ones((10, 1)), np.ones(10), ["m/s"], None), | |
(np.ones((10, 1)), np.ones(10), None, "km/s"), | |
(np.ones((10, 1)), np.ones(10), None, ["m/s"]), | |
(np.ones((10, 1)), np.ones((10, 1)), None, ["m/s"]), | |
(np.ones((10, 1)), np.ones((10, 2)), None, ["m/s", ""]), | |
] | |
for X, y, X_units, y_units in valid_units: | |
_check_assertions( | |
X, | |
*args, | |
y, | |
X_units, | |
y_units, | |
) | |
invalid_units = [ | |
(np.ones((10, 2)), np.ones(10), ["m/s", "s", "s^2"], None), | |
(np.ones((10, 2)), np.ones(10), ["m/s", "s", "s^2"], "km"), | |
(np.ones((10, 2)), np.ones((10, 2)), ["m/s", "s"], ["m"]), | |
(np.ones((10, 1)), np.ones((10, 1)), "m/s", ["m"]), | |
] | |
for X, y, X_units, y_units in invalid_units: | |
with self.assertRaises(ValueError): | |
_check_assertions( | |
X, | |
*args, | |
y, | |
X_units, | |
y_units, | |
) | |
def test_unit_propagation(self): | |
"""Check that units are propagated correctly. | |
This also tests that variables have the correct names. | |
""" | |
X = np.ones((100, 3)) | |
y = np.ones((100, 1)) | |
temp_dir = Path(tempfile.mkdtemp()) | |
equation_file = str(temp_dir / "equation_file.csv") | |
model = PySRRegressor( | |
binary_operators=["+", "*"], | |
early_stop_condition="(l, c) -> l < 1e-6 && c == 3", | |
progress=False, | |
model_selection="accuracy", | |
niterations=DEFAULT_NITERATIONS * 2, | |
populations=DEFAULT_POPULATIONS * 2, | |
complexity_of_constants=10, | |
weight_mutate_constant=0.0, | |
should_optimize_constants=False, | |
multithreading=False, | |
deterministic=True, | |
procs=0, | |
random_state=0, | |
equation_file=equation_file, | |
warm_start=True, | |
) | |
model.fit( | |
X, | |
y, | |
X_units=["m", "s", "A"], | |
y_units=["m*A"], | |
) | |
best = model.get_best() | |
self.assertIn("x0", best["equation"]) | |
self.assertNotIn("x1", best["equation"]) | |
self.assertIn("x2", best["equation"]) | |
self.assertEqual(best["complexity"], 3) | |
self.assertTrue( | |
model.equations_.iloc[0].complexity > 1 | |
or model.equations_.iloc[0].loss > 1e-6 | |
) | |
# With pkl file: | |
pkl_file = str(temp_dir / "equation_file.pkl") | |
model2 = PySRRegressor.from_file(pkl_file) | |
best2 = model2.get_best() | |
self.assertIn("x0", best2["equation"]) | |
# From csv file alone (we need to delete pkl file:) | |
# First, we delete the pkl file: | |
os.remove(pkl_file) | |
model3 = PySRRegressor.from_file( | |
equation_file, binary_operators=["+", "*"], n_features_in=X.shape[1] | |
) | |
best3 = model3.get_best() | |
self.assertIn("x0", best3["equation"]) | |
# Try warm start, but with no units provided (should | |
# be a different dataset, and thus different result): | |
model.early_stop_condition = "(l, c) -> l < 1e-6 && c == 1" | |
model.fit(X, y) | |
self.assertEqual(model.equations_.iloc[0].complexity, 1) | |
self.assertLess(model.equations_.iloc[0].loss, 1e-6) | |
# TODO: Determine desired behavior if second .fit() call does not have units | |
def runtests(just_tests=False): | |
"""Run all tests in test.py.""" | |
test_cases = [ | |
TestPipeline, | |
TestBest, | |
TestFeatureSelection, | |
TestMiscellaneous, | |
TestLaTeXTable, | |
TestDimensionalConstraints, | |
] | |
if just_tests: | |
return test_cases | |
suite = unittest.TestSuite() | |
loader = unittest.TestLoader() | |
for test_case in test_cases: | |
suite.addTests(loader.loadTestsFromTestCase(test_case)) | |
runner = unittest.TextTestRunner() | |
return runner.run(suite) | |