Spaces:
Running
Running
import multiprocessing as mp | |
import os | |
import tempfile | |
import time | |
from pathlib import Path | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from matplotlib import pyplot as plt | |
plt.ioff() | |
plt.rcParams["font.family"] = [ | |
"IBM Plex Mono", | |
# Fallback fonts: | |
"DejaVu Sans Mono", | |
"Courier New", | |
"monospace", | |
] | |
empty_df = lambda: pd.DataFrame( | |
{ | |
"equation": [], | |
"loss": [], | |
"complexity": [], | |
} | |
) | |
test_equations = ["sin(2*x)/x + 0.1*x"] | |
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int): | |
rstate = np.random.RandomState(data_seed) | |
x = rstate.uniform(-10, 10, num_points) | |
for k, v in { | |
"sin": "np.sin", | |
"cos": "np.cos", | |
"exp": "np.exp", | |
"log": "np.log", | |
"tan": "np.tan", | |
"^": "**", | |
}.items(): | |
s = s.replace(k, v) | |
y = eval(s) | |
noise = rstate.normal(0, noise_level, y.shape) | |
y_noisy = y + noise | |
return pd.DataFrame({"x": x}), y_noisy | |
def _greet_dispatch( | |
file_input, | |
force_run, | |
test_equation, | |
num_points, | |
noise_level, | |
data_seed, | |
niterations, | |
maxsize, | |
binary_operators, | |
unary_operators, | |
plot_update_delay, | |
parsimony, | |
populations, | |
population_size, | |
ncycles_per_iteration, | |
elementwise_loss, | |
adaptive_parsimony_scaling, | |
optimizer_algorithm, | |
optimizer_iterations, | |
batching, | |
batch_size, | |
): | |
"""Load data, then spawn a process to run the greet function.""" | |
if file_input is not None: | |
# Look at some statistics of the file: | |
df = pd.read_csv(file_input) | |
if len(df) == 0: | |
return ( | |
empty_df(), | |
"The file is empty!", | |
) | |
if len(df.columns) == 1: | |
return ( | |
empty_df(), | |
"The file has only one column!", | |
) | |
if len(df) > 10_000 and not force_run: | |
return ( | |
empty_df(), | |
"You have uploaded a file with more than 10,000 rows. " | |
"This will take very long to run. " | |
"Please upload a subsample of the data, " | |
"or check the box 'Ignore Warnings'.", | |
) | |
col_to_fit = df.columns[-1] | |
y = np.array(df[col_to_fit]) | |
X = df.drop([col_to_fit], axis=1) | |
else: | |
X, y = generate_data(test_equation, num_points, noise_level, data_seed) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
base = Path(tmpdirname) | |
equation_file = base / "hall_of_fame.csv" | |
equation_file_bkup = base / "hall_of_fame.csv.bkup" | |
process = mp.Process( | |
target=greet, | |
kwargs=dict( | |
X=X, | |
y=y, | |
niterations=niterations, | |
maxsize=maxsize, | |
binary_operators=binary_operators, | |
unary_operators=unary_operators, | |
equation_file=equation_file, | |
parsimony=parsimony, | |
populations=populations, | |
population_size=population_size, | |
ncycles_per_iteration=ncycles_per_iteration, | |
elementwise_loss=elementwise_loss, | |
adaptive_parsimony_scaling=adaptive_parsimony_scaling, | |
optimizer_algorithm=optimizer_algorithm, | |
optimizer_iterations=optimizer_iterations, | |
batching=batching, | |
batch_size=batch_size, | |
), | |
) | |
process.start() | |
last_yield_time = None | |
while process.is_alive(): | |
if equation_file_bkup.exists(): | |
try: | |
# First, copy the file to a the copy file | |
equation_file_copy = base / "hall_of_fame_copy.csv" | |
os.system(f"cp {equation_file_bkup} {equation_file_copy}") | |
equations = pd.read_csv(equation_file_copy) | |
# Ensure it is pareto dominated, with more complex expressions | |
# having higher loss. Otherwise remove those rows. | |
# TODO: Not sure why this occurs; could be the result of a late copy? | |
equations.sort_values("Complexity", ascending=True, inplace=True) | |
equations.reset_index(inplace=True) | |
bad_idx = [] | |
min_loss = None | |
for i in equations.index: | |
if min_loss is None or equations.loc[i, "Loss"] < min_loss: | |
min_loss = float(equations.loc[i, "Loss"]) | |
else: | |
bad_idx.append(i) | |
equations.drop(index=bad_idx, inplace=True) | |
while ( | |
last_yield_time is not None | |
and time.time() - last_yield_time < plot_update_delay | |
): | |
time.sleep(0.1) | |
yield equations[["Complexity", "Loss", "Equation"]] | |
last_yield_time = time.time() | |
except pd.errors.EmptyDataError: | |
pass | |
process.join() | |
def greet( | |
*, | |
X, | |
y, | |
**pysr_kwargs, | |
): | |
import pysr | |
model = pysr.PySRRegressor( | |
progress=False, | |
timeout_in_seconds=1000, | |
**pysr_kwargs, | |
) | |
model.fit(X, y) | |
return 0 | |
def _data_layout(): | |
with gr.Tab("Example Data"): | |
# Plot of the example data: | |
with gr.Row(): | |
with gr.Column(): | |
example_plot = gr.Plot() | |
with gr.Column(): | |
test_equation = gr.Radio( | |
test_equations, value=test_equations[0], label="Test Equation" | |
) | |
num_points = gr.Slider( | |
minimum=10, | |
maximum=1000, | |
value=200, | |
label="Number of Data Points", | |
step=1, | |
) | |
noise_level = gr.Slider( | |
minimum=0, maximum=1, value=0.05, label="Noise Level" | |
) | |
data_seed = gr.Number(value=0, label="Random Seed") | |
with gr.Tab("Upload Data"): | |
file_input = gr.File(label="Upload a CSV File") | |
gr.Markdown( | |
"The rightmost column of your CSV file will be used as the target variable." | |
) | |
return dict( | |
file_input=file_input, | |
test_equation=test_equation, | |
num_points=num_points, | |
noise_level=noise_level, | |
data_seed=data_seed, | |
example_plot=example_plot, | |
) | |
def _settings_layout(): | |
with gr.Tab("Basic Settings"): | |
binary_operators = gr.CheckboxGroup( | |
choices=["+", "-", "*", "/", "^", "max", "min", "mod", "cond"], | |
label="Binary Operators", | |
value=["+", "-", "*", "/"], | |
) | |
unary_operators = gr.CheckboxGroup( | |
choices=[ | |
"sin", | |
"cos", | |
"tan", | |
"exp", | |
"log", | |
"square", | |
"cube", | |
"sqrt", | |
"abs", | |
"erf", | |
"relu", | |
"round", | |
"sign", | |
], | |
label="Unary Operators", | |
value=["sin"], | |
) | |
niterations = gr.Slider( | |
minimum=1, | |
maximum=1000, | |
value=40, | |
label="Number of Iterations", | |
step=1, | |
) | |
maxsize = gr.Slider( | |
minimum=7, | |
maximum=100, | |
value=20, | |
label="Maximum Complexity", | |
step=1, | |
) | |
parsimony = gr.Number( | |
value=0.0032, | |
label="Parsimony Coefficient", | |
) | |
with gr.Tab("Advanced Settings"): | |
populations = gr.Slider( | |
minimum=2, | |
maximum=100, | |
value=15, | |
label="Number of Populations", | |
step=1, | |
) | |
population_size = gr.Slider( | |
minimum=2, | |
maximum=1000, | |
value=33, | |
label="Population Size", | |
step=1, | |
) | |
ncycles_per_iteration = gr.Number( | |
value=550, | |
label="Cycles per Iteration", | |
) | |
elementwise_loss = gr.Radio( | |
["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"], | |
value="L2DistLoss()", | |
label="Loss Function", | |
) | |
adaptive_parsimony_scaling = gr.Number( | |
value=20.0, | |
label="Adaptive Parsimony Scaling", | |
) | |
optimizer_algorithm = gr.Radio( | |
["BFGS", "NelderMead"], | |
value="BFGS", | |
label="Optimizer Algorithm", | |
) | |
optimizer_iterations = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=8, | |
label="Optimizer Iterations", | |
step=1, | |
) | |
# Bool: | |
batching = gr.Checkbox( | |
value=False, | |
label="Batching", | |
) | |
batch_size = gr.Slider( | |
minimum=2, | |
maximum=1000, | |
value=50, | |
label="Batch Size", | |
step=1, | |
) | |
with gr.Tab("Gradio Settings"): | |
plot_update_delay = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=3, | |
label="Plot Update Delay", | |
) | |
force_run = gr.Checkbox( | |
value=False, | |
label="Ignore Warnings", | |
) | |
return dict( | |
binary_operators=binary_operators, | |
unary_operators=unary_operators, | |
niterations=niterations, | |
maxsize=maxsize, | |
force_run=force_run, | |
plot_update_delay=plot_update_delay, | |
parsimony=parsimony, | |
populations=populations, | |
population_size=population_size, | |
ncycles_per_iteration=ncycles_per_iteration, | |
elementwise_loss=elementwise_loss, | |
adaptive_parsimony_scaling=adaptive_parsimony_scaling, | |
optimizer_algorithm=optimizer_algorithm, | |
optimizer_iterations=optimizer_iterations, | |
batching=batching, | |
batch_size=batch_size, | |
) | |
def main(): | |
blocks = {} | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
blocks = {**blocks, **_data_layout()} | |
with gr.Row(): | |
blocks = {**blocks, **_settings_layout()} | |
with gr.Column(): | |
with gr.Tab("Pareto Front"): | |
blocks["pareto"] = gr.Plot() | |
with gr.Tab("Predictions"): | |
blocks["predictions_plot"] = gr.Plot() | |
blocks["df"] = gr.Dataframe( | |
headers=["complexity", "loss", "equation"], | |
datatype=["number", "number", "str"], | |
wrap=True, | |
column_widths=[75, 75, 200], | |
interactive=False, | |
) | |
blocks["run"] = gr.Button() | |
blocks["run"].click( | |
_greet_dispatch, | |
inputs=[ | |
blocks[k] | |
for k in [ | |
"file_input", | |
"force_run", | |
"test_equation", | |
"num_points", | |
"noise_level", | |
"data_seed", | |
"niterations", | |
"maxsize", | |
"binary_operators", | |
"unary_operators", | |
"plot_update_delay", | |
"parsimony", | |
"populations", | |
"population_size", | |
"ncycles_per_iteration", | |
"elementwise_loss", | |
"adaptive_parsimony_scaling", | |
"optimizer_algorithm", | |
"optimizer_iterations", | |
"batching", | |
"batch_size", | |
] | |
], | |
outputs=blocks["df"], | |
) | |
# Any update to the equation choice will trigger a replot: | |
eqn_components = [ | |
blocks["test_equation"], | |
blocks["num_points"], | |
blocks["noise_level"], | |
blocks["data_seed"], | |
] | |
for eqn_component in eqn_components: | |
eqn_component.change(replot, eqn_components, blocks["example_plot"]) | |
# Update plot when dataframe is updated: | |
blocks["df"].change( | |
replot_pareto, | |
inputs=[blocks["df"], blocks["maxsize"]], | |
outputs=[blocks["pareto"]], | |
) | |
demo.load(replot, eqn_components, blocks["example_plot"]) | |
demo.launch(debug=True) | |
def replot_pareto(df, maxsize): | |
fig, ax = plt.subplots(figsize=(6, 6), dpi=100) | |
if len(df) == 0 or "Equation" not in df.columns: | |
return fig | |
# Plotting the data | |
ax.loglog( | |
df["Complexity"], | |
df["Loss"], | |
marker="o", | |
linestyle="-", | |
color="#333f48", | |
linewidth=1.5, | |
markersize=6, | |
) | |
# Set the axis limits | |
ax.set_xlim(0.5, maxsize + 1) | |
ytop = 2 ** (np.ceil(np.log2(df["Loss"].max()))) | |
ybottom = 2 ** (np.floor(np.log2(df["Loss"].min() + 1e-20))) | |
ax.set_ylim(ybottom, ytop) | |
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5) | |
ax.spines["top"].set_visible(False) | |
ax.spines["right"].set_visible(False) | |
# Range-frame the plot | |
for direction in ["bottom", "left"]: | |
ax.spines[direction].set_position(("outward", 10)) | |
# Delete far ticks | |
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5) | |
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3) | |
ax.set_xlabel("Complexity") | |
ax.set_ylabel("Loss") | |
fig.tight_layout(pad=2) | |
return fig | |
def replot(test_equation, num_points, noise_level, data_seed): | |
X, y = generate_data(test_equation, num_points, noise_level, data_seed) | |
x = X["x"] | |
plt.rcParams["font.family"] = "IBM Plex Mono" | |
fig, ax = plt.subplots(figsize=(6, 6), dpi=100) | |
ax.scatter(x, y, alpha=0.7, edgecolors="w", s=50) | |
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5) | |
ax.spines["top"].set_visible(False) | |
ax.spines["right"].set_visible(False) | |
# Range-frame the plot | |
for direction in ["bottom", "left"]: | |
ax.spines[direction].set_position(("outward", 10)) | |
# Delete far ticks | |
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5) | |
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3) | |
ax.set_xlabel("x") | |
ax.set_ylabel("y") | |
fig.tight_layout(pad=2) | |
return fig | |
if __name__ == "__main__": | |
main() | |