Spaces:
Running
Running
import inspect | |
import unittest | |
from unittest.mock import patch | |
import numpy as np | |
from pysr import PySRRegressor | |
from pysr.sr import run_feature_selection, _handle_feature_selection | |
import sympy | |
from sympy import lambdify | |
import pandas as pd | |
class TestPipeline(unittest.TestCase): | |
def setUp(self): | |
# Using inspect, | |
# get default niterations from PySRRegressor, and double them: | |
default_niterations = ( | |
inspect.signature(PySRRegressor.__init__).parameters["niterations"].default | |
) | |
default_populations = ( | |
inspect.signature(PySRRegressor.__init__).parameters["populations"].default | |
) | |
self.default_test_kwargs = dict( | |
model_selection="accuracy", | |
niterations=default_niterations * 2, | |
populations=default_populations * 2, | |
) | |
self.rstate = np.random.RandomState(0) | |
self.X = self.rstate.randn(100, 5) | |
def test_linear_relation(self): | |
y = self.X[:, 0] | |
model = PySRRegressor(**self.default_test_kwargs) | |
model.fit(self.X, y) | |
print(model.equations) | |
self.assertLessEqual(model.get_best()["loss"], 1e-4) | |
def test_multiprocessing(self): | |
y = self.X[:, 0] | |
model = PySRRegressor(**self.default_test_kwargs, procs=2, multithreading=False) | |
model.fit(self.X, y) | |
print(model.equations) | |
self.assertLessEqual(model.equations.iloc[-1]["loss"], 1e-4) | |
def test_multioutput_custom_operator_quiet(self): | |
y = self.X[:, [0, 1]] ** 2 | |
model = PySRRegressor( | |
unary_operators=["square_op(x) = x^2"], | |
extra_sympy_mappings={"square_op": lambda x: x**2}, | |
binary_operators=["plus"], | |
verbosity=0, | |
**self.default_test_kwargs, | |
procs=0, | |
) | |
model.fit(self.X, y) | |
equations = model.equations | |
print(equations) | |
self.assertIn("square_op", model.equations[0].iloc[-1]["equation"]) | |
self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4) | |
self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4) | |
test_y1 = model.predict(self.X) | |
test_y2 = model.predict(self.X, index=[-1, -1]) | |
mse1 = np.average((test_y1 - y) ** 2) | |
mse2 = np.average((test_y2 - y) ** 2) | |
self.assertLessEqual(mse1, 1e-4) | |
self.assertLessEqual(mse2, 1e-4) | |
bad_y = model.predict(self.X, index=[0, 0]) | |
bad_mse = np.average((bad_y - y) ** 2) | |
self.assertGreater(bad_mse, 1e-4) | |
def test_multioutput_weighted_with_callable_temp_equation(self): | |
X = self.X.copy() | |
y = X[:, [0, 1]] ** 2 | |
w = self.rstate.rand(*y.shape) | |
w[w < 0.5] = 0.0 | |
w[w >= 0.5] = 1.0 | |
# Double equation when weights are 0: | |
y = (2 - w) * y | |
# Thus, pysr needs to use the weights to find the right equation! | |
model = PySRRegressor( | |
unary_operators=["sq(x) = x^2"], | |
binary_operators=["plus"], | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
temp_equation_file=True, | |
delete_tempfiles=False, | |
) | |
model.fit(X.copy(), y, weights=w) | |
np.testing.assert_almost_equal( | |
model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=4 | |
) | |
np.testing.assert_almost_equal( | |
model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=4 | |
) | |
def test_empty_operators_single_input_multirun(self): | |
X = self.rstate.randn(100, 1) | |
y = X[:, 0] + 3.0 | |
regressor = PySRRegressor( | |
unary_operators=[], | |
binary_operators=["plus"], | |
**self.default_test_kwargs, | |
) | |
self.assertTrue("None" in regressor.__repr__()) | |
regressor.fit(X, y) | |
self.assertTrue("None" not in regressor.__repr__()) | |
self.assertTrue(">>>>" in regressor.__repr__()) | |
self.assertLessEqual(regressor.equations.iloc[-1]["loss"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
# Test if repeated fit works: | |
regressor.set_params(niterations=0) | |
regressor.fit(X, y) | |
self.assertLessEqual(regressor.equations.iloc[-1]["loss"], 1e-4) | |
np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1) | |
# Tweak model selection: | |
regressor.set_params(model_selection="best") | |
self.assertEqual(regressor.get_params()["model_selection"], "best") | |
self.assertTrue("None" not in regressor.__repr__()) | |
self.assertTrue(">>>>" in regressor.__repr__()) | |
def test_noisy(self): | |
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05 | |
model = PySRRegressor( | |
# Test that passing a single operator works: | |
unary_operators="sq(x) = x^2", | |
binary_operators="plus", | |
extra_sympy_mappings={"sq": lambda x: x**2}, | |
**self.default_test_kwargs, | |
procs=0, | |
denoise=True, | |
) | |
model.fit(self.X, y) | |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) | |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2) | |
def test_pandas_resample(self): | |
X = pd.DataFrame( | |
{ | |
"T": self.rstate.randn(500), | |
"x": self.rstate.randn(500), | |
"unused_feature": self.rstate.randn(500), | |
} | |
) | |
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837) | |
y = true_fn(X) | |
noise = self.rstate.randn(500) * 0.01 | |
y = y + noise | |
# We also test y as a pandas array: | |
y = pd.Series(y) | |
# Resampled array is a different order of features: | |
Xresampled = pd.DataFrame( | |
{ | |
"unused_feature": self.rstate.randn(100), | |
"x": self.rstate.randn(100), | |
"T": self.rstate.randn(100), | |
} | |
) | |
model = PySRRegressor( | |
unary_operators=[], | |
binary_operators=["+", "*", "/", "-"], | |
**self.default_test_kwargs, | |
Xresampled=Xresampled, | |
denoise=True, | |
select_k_features=2, | |
) | |
model.fit(X, y) | |
self.assertNotIn("unused_feature", model.latex()) | |
self.assertIn("T", model.latex()) | |
self.assertIn("x", model.latex()) | |
self.assertLessEqual(model.get_best()["loss"], 1e-1) | |
fn = model.get_best()["lambda_format"] | |
self.assertListEqual(list(sorted(fn._selection)), [0, 1]) | |
X2 = pd.DataFrame( | |
{ | |
"T": self.rstate.randn(100), | |
"unused_feature": self.rstate.randn(100), | |
"x": self.rstate.randn(100), | |
} | |
) | |
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1) | |
self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1) | |
class TestBest(unittest.TestCase): | |
def setUp(self): | |
equations = pd.DataFrame( | |
{ | |
"equation": ["1.0", "cos(x0)", "square(cos(x0))"], | |
"loss": [1.0, 0.1, 1e-5], | |
"complexity": [1, 2, 3], | |
} | |
) | |
equations["complexity loss equation".split(" ")].to_csv( | |
"equation_file.csv.bkup", sep="|" | |
) | |
self.model = PySRRegressor( | |
equation_file="equation_file.csv", | |
variable_names="x0 x1".split(" "), | |
extra_sympy_mappings={}, | |
output_jax_format=False, | |
model_selection="accuracy", | |
) | |
self.model.n_features = 2 | |
self.model.refresh() | |
self.equations = self.model.equations | |
self.rstate = np.random.RandomState(0) | |
def test_best(self): | |
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2) | |
def test_index_selection(self): | |
self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2) | |
self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0"))) | |
self.assertEqual(self.model.sympy(0), 1.0) | |
def test_best_tex(self): | |
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}") | |
def test_best_lambda(self): | |
X = self.rstate.randn(10, 2) | |
y = np.cos(X[:, 0]) ** 2 | |
for f in [self.model.predict, self.equations.iloc[-1]["lambda_format"]]: | |
np.testing.assert_almost_equal(f(X), y, decimal=4) | |
class TestFeatureSelection(unittest.TestCase): | |
def setUp(self): | |
self.rstate = np.random.RandomState(0) | |
def test_feature_selection(self): | |
X = self.rstate.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
selected = run_feature_selection(X, y, select_k_features=2) | |
self.assertEqual(sorted(selected), [2, 3]) | |
def test_feature_selection_handler(self): | |
X = self.rstate.randn(20000, 5) | |
y = X[:, 2] ** 2 + X[:, 3] ** 2 | |
var_names = [f"x{i}" for i in range(5)] | |
selected_X, selection = _handle_feature_selection( | |
X, | |
select_k_features=2, | |
variable_names=var_names, | |
y=y, | |
) | |
self.assertTrue((2 in selection) and (3 in selection)) | |
selected_var_names = [var_names[i] for i in selection] | |
self.assertEqual(set(selected_var_names), set("x2 x3".split(" "))) | |
np.testing.assert_array_equal( | |
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1) | |
) | |
class TestMiscellaneous(unittest.TestCase): | |
"""Test miscellaneous functions.""" | |
def test_deprecation(self): | |
# Ensure that deprecation works as expected, with a warning, | |
# and sets the correct value. | |
with self.assertWarns(UserWarning): | |
model = PySRRegressor(fractionReplaced=0.2) | |
# This is a deprecated parameter, so we should get a warning. | |
# The correct value should be set: | |
self.assertEqual(model.params["fraction_replaced"], 0.2) | |