PySR / pysr /sr.py
MilesCranmer's picture
Merge branch 'master' into gui
11be150 unverified
raw
history blame
107 kB
"""Define the PySRRegressor scikit-learn interface."""
import copy
import os
import pickle as pkl
import re
import shutil
import sys
import tempfile
import warnings
from dataclasses import dataclass, fields
from datetime import datetime
from io import StringIO
from multiprocessing import cpu_count
from pathlib import Path
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union, cast
import numpy as np
import pandas as pd
from numpy import ndarray
from numpy.typing import NDArray
from sklearn.base import BaseEstimator, MultiOutputMixin, RegressorMixin
from sklearn.utils import check_array, check_consistent_length, check_random_state
from sklearn.utils.validation import _check_feature_names_in # type: ignore
from sklearn.utils.validation import check_is_fitted
from .denoising import denoise, multi_denoise
from .deprecated import DEPRECATED_KWARGS
from .export_jax import sympy2jax
from .export_latex import (
sympy2latex,
sympy2latextable,
sympy2multilatextable,
with_preamble,
)
from .export_numpy import sympy2numpy
from .export_sympy import assert_valid_sympy_symbol, create_sympy_symbols, pysr2sympy
from .export_torch import sympy2torch
from .feature_selection import run_feature_selection
from .julia_extensions import load_required_packages
from .julia_helpers import (
PythonCall,
_escape_filename,
_load_cluster_manager,
jl_array,
jl_deserialize,
jl_is_function,
jl_serialize,
)
from .julia_import import SymbolicRegression, jl
from .utils import (
ArrayLike,
PathLike,
_csv_filename_to_pkl_filename,
_preprocess_julia_floats,
_safe_check_feature_names_in,
_subscriptify,
_suggest_keywords,
)
ALREADY_RAN = False
def _process_constraints(binary_operators, unary_operators, constraints):
constraints = constraints.copy()
for op in unary_operators:
if op not in constraints:
constraints[op] = -1
for op in binary_operators:
if op not in constraints:
if op in ["^", "pow"]:
# Warn user that they should set up constraints
warnings.warn(
"You are using the `^` operator, but have not set up `constraints` for it. "
"This may lead to overly complex expressions. "
"One typical constraint is to use `constraints={..., '^': (-1, 1)}`, which "
"will allow arbitrary-complexity base (-1) but only powers such as "
"a constant or variable (1). "
"For more tips, please see https://astroautomata.com/PySR/tuning/"
)
constraints[op] = (-1, -1)
if op in ["plus", "sub", "+", "-"]:
if constraints[op][0] != constraints[op][1]:
raise NotImplementedError(
"You need equal constraints on both sides for - and +, "
"due to simplification strategies."
)
elif op in ["mult", "*"]:
# Make sure the complex expression is in the left side.
if constraints[op][0] == -1:
continue
if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
constraints[op][0], constraints[op][1] = (
constraints[op][1],
constraints[op][0],
)
return constraints
def _maybe_create_inline_operators(
binary_operators, unary_operators, extra_sympy_mappings
):
binary_operators = binary_operators.copy()
unary_operators = unary_operators.copy()
for op_list in [binary_operators, unary_operators]:
for i, op in enumerate(op_list):
is_user_defined_operator = "(" in op
if is_user_defined_operator:
jl.seval(op)
# Cut off from the first non-alphanumeric char:
first_non_char = [j for j, char in enumerate(op) if char == "("][0]
function_name = op[:first_non_char]
# Assert that function_name only contains
# alphabetical characters, numbers,
# and underscores:
if not re.match(r"^[a-zA-Z0-9_]+$", function_name):
raise ValueError(
f"Invalid function name {function_name}. "
"Only alphanumeric characters, numbers, "
"and underscores are allowed."
)
if (extra_sympy_mappings is None) or (
function_name not in extra_sympy_mappings
):
raise ValueError(
f"Custom function {function_name} is not defined in `extra_sympy_mappings`. "
"You can define it with, "
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1/x})`, where "
"`lambda x: 1/x` is a valid SymPy function defining the operator. "
"You can also define these at initialization time."
)
op_list[i] = function_name
return binary_operators, unary_operators
def _check_assertions(
X,
use_custom_variable_names,
variable_names,
complexity_of_variables,
weights,
y,
X_units,
y_units,
):
# Check for potential errors before they happen
assert len(X.shape) == 2
assert len(y.shape) in [1, 2]
assert X.shape[0] == y.shape[0]
if weights is not None:
assert weights.shape == y.shape
assert X.shape[0] == weights.shape[0]
if use_custom_variable_names:
assert len(variable_names) == X.shape[1]
# Check none of the variable names are function names:
for var_name in variable_names:
# Check if alphanumeric only:
if not re.match(r"^[β‚€β‚β‚‚β‚ƒβ‚„β‚…β‚†β‚‡β‚ˆβ‚‰a-zA-Z0-9_]+$", var_name):
raise ValueError(
f"Invalid variable name {var_name}. "
"Only alphanumeric characters, numbers, "
"and underscores are allowed."
)
assert_valid_sympy_symbol(var_name)
if (
isinstance(complexity_of_variables, list)
and len(complexity_of_variables) != X.shape[1]
):
raise ValueError(
"The number of elements in `complexity_of_variables` must equal the number of features in `X`."
)
if X_units is not None and len(X_units) != X.shape[1]:
raise ValueError(
"The number of units in `X_units` must equal the number of features in `X`."
)
if y_units is not None:
good_y_units = False
if isinstance(y_units, list):
if len(y.shape) == 1:
good_y_units = len(y_units) == 1
else:
good_y_units = len(y_units) == y.shape[1]
else:
good_y_units = len(y.shape) == 1 or y.shape[1] == 1
if not good_y_units:
raise ValueError(
"The number of units in `y_units` must equal the number of output features in `y`."
)
# Class validation constants
VALID_OPTIMIZER_ALGORITHMS = ["BFGS", "NelderMead"]
@dataclass
class _DynamicallySetParams:
"""Defines some parameters that are set at runtime."""
binary_operators: List[str]
unary_operators: List[str]
maxdepth: int
constraints: Dict[str, str]
multithreading: bool
batch_size: int
update_verbosity: int
progress: bool
warmup_maxsize_by: float
class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
"""
High-performance symbolic regression algorithm.
This is the scikit-learn interface for SymbolicRegression.jl.
This model will automatically search for equations which fit
a given dataset subject to a particular loss and set of
constraints.
Most default parameters have been tuned over several example equations,
but you should adjust `niterations`, `binary_operators`, `unary_operators`
to your requirements. You can view more detailed explanations of the options
on the [options page](https://astroautomata.com/PySR/options) of the
documentation.
Parameters
----------
model_selection : str
Model selection criterion when selecting a final expression from
the list of best expression at each complexity.
Can be `'accuracy'`, `'best'`, or `'score'`. Default is `'best'`.
`'accuracy'` selects the candidate model with the lowest loss
(highest accuracy).
`'score'` selects the candidate model with the highest score.
Score is defined as the negated derivative of the log-loss with
respect to complexity - if an expression has a much better
loss at a slightly higher complexity, it is preferred.
`'best'` selects the candidate model with the highest score
among expressions with a loss better than at least 1.5x the
most accurate model.
binary_operators : list[str]
List of strings for binary operators used in the search.
See the [operators page](https://astroautomata.com/PySR/operators/)
for more details.
Default is `["+", "-", "*", "/"]`.
unary_operators : list[str]
Operators which only take a single scalar as input.
For example, `"cos"` or `"exp"`.
Default is `None`.
niterations : int
Number of iterations of the algorithm to run. The best
equations are printed and migrate between populations at the
end of each iteration.
Default is `40`.
populations : int
Number of populations running.
Default is `15`.
population_size : int
Number of individuals in each population.
Default is `33`.
max_evals : int
Limits the total number of evaluations of expressions to
this number. Default is `None`.
maxsize : int
Max complexity of an equation. Default is `20`.
maxdepth : int
Max depth of an equation. You can use both `maxsize` and
`maxdepth`. `maxdepth` is by default not used.
Default is `None`.
warmup_maxsize_by : float
Whether to slowly increase max size from a small number up to
the maxsize (if greater than 0). If greater than 0, says the
fraction of training time at which the current maxsize will
reach the user-passed maxsize.
Default is `0.0`.
timeout_in_seconds : float
Make the search return early once this many seconds have passed.
Default is `None`.
constraints : dict[str, int | tuple[int,int]]
Dictionary of int (unary) or 2-tuples (binary), this enforces
maxsize constraints on the individual arguments of operators.
E.g., `'pow': (-1, 1)` says that power laws can have any
complexity left argument, but only 1 complexity in the right
argument. Use this to force more interpretable solutions.
Default is `None`.
nested_constraints : dict[str, dict]
Specifies how many times a combination of operators can be
nested. For example, `{"sin": {"cos": 0}}, "cos": {"cos": 2}}`
specifies that `cos` may never appear within a `sin`, but `sin`
can be nested with itself an unlimited number of times. The
second term specifies that `cos` can be nested up to 2 times
within a `cos`, so that `cos(cos(cos(x)))` is allowed
(as well as any combination of `+` or `-` within it), but
`cos(cos(cos(cos(x))))` is not allowed. When an operator is not
specified, it is assumed that it can be nested an unlimited
number of times. This requires that there is no operator which
is used both in the unary operators and the binary operators
(e.g., `-` could be both subtract, and negation). For binary
operators, you only need to provide a single number: both
arguments are treated the same way, and the max of each
argument is constrained.
Default is `None`.
elementwise_loss : str
String of Julia code specifying an elementwise loss function.
Can either be a loss from LossFunctions.jl, or your own loss
written as a function. Examples of custom written losses include:
`myloss(x, y) = abs(x-y)` for non-weighted, or
`myloss(x, y, w) = w*abs(x-y)` for weighted.
The included losses include:
Regression: `LPDistLoss{P}()`, `L1DistLoss()`,
`L2DistLoss()` (mean square), `LogitDistLoss()`,
`HuberLoss(d)`, `L1EpsilonInsLoss(Ο΅)`, `L2EpsilonInsLoss(Ο΅)`,
`PeriodicLoss(c)`, `QuantileLoss(Ο„)`.
Classification: `ZeroOneLoss()`, `PerceptronLoss()`,
`L1HingeLoss()`, `SmoothedL1HingeLoss(Ξ³)`,
`ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
`SigmoidLoss()`, `DWDMarginLoss(q)`.
Default is `"L2DistLoss()"`.
loss_function : str
Alternatively, you can specify the full objective function as
a snippet of Julia code, including any sort of custom evaluation
(including symbolic manipulations beforehand), and any sort
of loss function or regularizations. The default `loss_function`
used in SymbolicRegression.jl is roughly equal to:
```julia
function eval_loss(tree, dataset::Dataset{T,L}, options)::L where {T,L}
prediction, flag = eval_tree_array(tree, dataset.X, options)
if !flag
return L(Inf)
end
return sum((prediction .- dataset.y) .^ 2) / dataset.n
end
```
where the example elementwise loss is mean-squared error.
You may pass a function with the same arguments as this (note
that the name of the function doesn't matter). Here,
both `prediction` and `dataset.y` are 1D arrays of length `dataset.n`.
If using `batching`, then you should add an
`idx` argument to the function, which is `nothing`
for non-batched, and a 1D array of indices for batched.
Default is `None`.
complexity_of_operators : dict[str, Union[int, float]]
If you would like to use a complexity other than 1 for an
operator, specify the complexity here. For example,
`{"sin": 2, "+": 1}` would give a complexity of 2 for each use
of the `sin` operator, and a complexity of 1 for each use of
the `+` operator (which is the default). You may specify real
numbers for a complexity, and the total complexity of a tree
will be rounded to the nearest integer after computing.
Default is `None`.
complexity_of_constants : int | float
Complexity of constants. Default is `1`.
complexity_of_variables : int | float
Global complexity of variables. To set different complexities for
different variables, pass a list of complexities to the `fit` method
with keyword `complexity_of_variables`. You cannot use both.
Default is `1`.
parsimony : float
Multiplicative factor for how much to punish complexity.
Default is `0.0032`.
dimensional_constraint_penalty : float
Additive penalty for if dimensional analysis of an expression fails.
By default, this is `1000.0`.
dimensionless_constants_only : bool
Whether to only search for dimensionless constants, if using units.
Default is `False`.
use_frequency : bool
Whether to measure the frequency of complexities, and use that
instead of parsimony to explore equation space. Will naturally
find equations of all complexities.
Default is `True`.
use_frequency_in_tournament : bool
Whether to use the frequency mentioned above in the tournament,
rather than just the simulated annealing.
Default is `True`.
adaptive_parsimony_scaling : float
If the adaptive parsimony strategy (`use_frequency` and
`use_frequency_in_tournament`), this is how much to (exponentially)
weight the contribution. If you find that the search is only optimizing
the most complex expressions while the simpler expressions remain stagnant,
you should increase this value.
Default is `20.0`.
alpha : float
Initial temperature for simulated annealing
(requires `annealing` to be `True`).
Default is `0.1`.
annealing : bool
Whether to use annealing. Default is `False`.
early_stop_condition : float | str
Stop the search early if this loss is reached. You may also
pass a string containing a Julia function which
takes a loss and complexity as input, for example:
`"f(loss, complexity) = (loss < 0.1) && (complexity < 10)"`.
Default is `None`.
ncycles_per_iteration : int
Number of total mutations to run, per 10 samples of the
population, per iteration.
Default is `550`.
fraction_replaced : float
How much of population to replace with migrating equations from
other populations.
Default is `0.000364`.
fraction_replaced_hof : float
How much of population to replace with migrating equations from
hall of fame. Default is `0.035`.
weight_add_node : float
Relative likelihood for mutation to add a node.
Default is `0.79`.
weight_insert_node : float
Relative likelihood for mutation to insert a node.
Default is `5.1`.
weight_delete_node : float
Relative likelihood for mutation to delete a node.
Default is `1.7`.
weight_do_nothing : float
Relative likelihood for mutation to leave the individual.
Default is `0.21`.
weight_mutate_constant : float
Relative likelihood for mutation to change the constant slightly
in a random direction.
Default is `0.048`.
weight_mutate_operator : float
Relative likelihood for mutation to swap an operator.
Default is `0.47`.
weight_swap_operands : float
Relative likehood for swapping operands in binary operators.
Default is `0.1`.
weight_randomize : float
Relative likelihood for mutation to completely delete and then
randomly generate the equation
Default is `0.00023`.
weight_simplify : float
Relative likelihood for mutation to simplify constant parts by evaluation
Default is `0.0020`.
weight_optimize: float
Constant optimization can also be performed as a mutation, in addition to
the normal strategy controlled by `optimize_probability` which happens
every iteration. Using it as a mutation is useful if you want to use
a large `ncycles_periteration`, and may not optimize very often.
Default is `0.0`.
crossover_probability : float
Absolute probability of crossover-type genetic operation, instead of a mutation.
Default is `0.066`.
skip_mutation_failures : bool
Whether to skip mutation and crossover failures, rather than
simply re-sampling the current member.
Default is `True`.
migration : bool
Whether to migrate. Default is `True`.
hof_migration : bool
Whether to have the hall of fame migrate. Default is `True`.
topn : int
How many top individuals migrate from each population.
Default is `12`.
should_simplify : bool
Whether to use algebraic simplification in the search. Note that only
a few simple rules are implemented. Default is `True`.
should_optimize_constants : bool
Whether to numerically optimize constants (Nelder-Mead/Newton)
at the end of each iteration. Default is `True`.
optimizer_algorithm : str
Optimization scheme to use for optimizing constants. Can currently
be `NelderMead` or `BFGS`.
Default is `"BFGS"`.
optimizer_nrestarts : int
Number of time to restart the constants optimization process with
different initial conditions.
Default is `2`.
optimize_probability : float
Probability of optimizing the constants during a single iteration of
the evolutionary algorithm.
Default is `0.14`.
optimizer_iterations : int
Number of iterations that the constants optimizer can take.
Default is `8`.
perturbation_factor : float
Constants are perturbed by a max factor of
(perturbation_factor*T + 1). Either multiplied by this or
divided by this.
Default is `0.076`.
tournament_selection_n : int
Number of expressions to consider in each tournament.
Default is `10`.
tournament_selection_p : float
Probability of selecting the best expression in each
tournament. The probability will decay as p*(1-p)^n for other
expressions, sorted by loss.
Default is `0.86`.
procs : int
Number of processes (=number of populations running).
Default is `cpu_count()`.
multithreading : bool
Use multithreading instead of distributed backend.
Using procs=0 will turn off both. Default is `True`.
cluster_manager : str
For distributed computing, this sets the job queue system. Set
to one of "slurm", "pbs", "lsf", "sge", "qrsh", "scyld", or
"htc". If set to one of these, PySR will run in distributed
mode, and use `procs` to figure out how many processes to launch.
Default is `None`.
heap_size_hint_in_bytes : int
For multiprocessing, this sets the `--heap-size-hint` parameter
for new Julia processes. This can be configured when using
multi-node distributed compute, to give a hint to each process
about how much memory they can use before aggressive garbage
collection.
batching : bool
Whether to compare population members on small batches during
evolution. Still uses full dataset for comparing against hall
of fame. Default is `False`.
batch_size : int
The amount of data to use if doing batching. Default is `50`.
fast_cycle : bool
Batch over population subsamples. This is a slightly different
algorithm than regularized evolution, but does cycles 15%
faster. May be algorithmically less efficient.
Default is `False`.
turbo: bool
(Experimental) Whether to use LoopVectorization.jl to speed up the
search evaluation. Certain operators may not be supported.
Does not support 16-bit precision floats.
Default is `False`.
bumper: bool
(Experimental) Whether to use Bumper.jl to speed up the search
evaluation. Does not support 16-bit precision floats.
Default is `False`.
precision : int
What precision to use for the data. By default this is `32`
(float32), but you can select `64` or `16` as well, giving
you 64 or 16 bits of floating point precision, respectively.
If you pass complex data, the corresponding complex precision
will be used (i.e., `64` for complex128, `32` for complex64).
Default is `32`.
enable_autodiff : bool
Whether to create derivative versions of operators for automatic
differentiation. This is only necessary if you wish to compute
the gradients of an expression within a custom loss function.
Default is `False`.
random_state : int, Numpy RandomState instance or None
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
Default is `None`.
deterministic : bool
Make a PySR search give the same result every run.
To use this, you must turn off parallelism
(with `procs`=0, `multithreading`=False),
and set `random_state` to a fixed seed.
Default is `False`.
warm_start : bool
Tells fit to continue from where the last call to fit finished.
If false, each call to fit will be fresh, overwriting previous results.
Default is `False`.
verbosity : int
What verbosity level to use. 0 means minimal print statements.
Default is `1`.
update_verbosity : int
What verbosity level to use for package updates.
Will take value of `verbosity` if not given.
Default is `None`.
print_precision : int
How many significant digits to print for floats. Default is `5`.
progress : bool
Whether to use a progress bar instead of printing to stdout.
Default is `True`.
equation_file : str
Where to save the files (.csv extension).
Default is `None`.
temp_equation_file : bool
Whether to put the hall of fame file in the temp directory.
Deletion is then controlled with the `delete_tempfiles`
parameter.
Default is `False`.
tempdir : str
directory for the temporary files. Default is `None`.
delete_tempfiles : bool
Whether to delete the temporary files after finishing.
Default is `True`.
update: bool
Whether to automatically update Julia packages when `fit` is called.
You should make sure that PySR is up-to-date itself first, as
the packaged Julia packages may not necessarily include all
updated dependencies.
Default is `False`.
output_jax_format : bool
Whether to create a 'jax_format' column in the output,
containing jax-callable functions and the default parameters in
a jax array.
Default is `False`.
output_torch_format : bool
Whether to create a 'torch_format' column in the output,
containing a torch module with trainable parameters.
Default is `False`.
extra_sympy_mappings : dict[str, Callable]
Provides mappings between custom `binary_operators` or
`unary_operators` defined in julia strings, to those same
operators defined in sympy.
E.G if `unary_operators=["inv(x)=1/x"]`, then for the fitted
model to be export to sympy, `extra_sympy_mappings`
would be `{"inv": lambda x: 1/x}`.
Default is `None`.
extra_jax_mappings : dict[Callable, str]
Similar to `extra_sympy_mappings` but for model export
to jax. The dictionary maps sympy functions to jax functions.
For example: `extra_jax_mappings={sympy.sin: "jnp.sin"}` maps
the `sympy.sin` function to the equivalent jax expression `jnp.sin`.
Default is `None`.
extra_torch_mappings : dict[Callable, Callable]
The same as `extra_jax_mappings` but for model export
to pytorch. Note that the dictionary keys should be callable
pytorch expressions.
For example: `extra_torch_mappings={sympy.sin: torch.sin}`.
Default is `None`.
denoise : bool
Whether to use a Gaussian Process to denoise the data before
inputting to PySR. Can help PySR fit noisy data.
Default is `False`.
select_k_features : int
Whether to run feature selection in Python using random forests,
before passing to the symbolic regression code. None means no
feature selection; an int means select that many features.
Default is `None`.
**kwargs : dict
Supports deprecated keyword arguments. Other arguments will
result in an error.
Attributes
----------
equations_ : pandas.DataFrame | list[pandas.DataFrame]
Processed DataFrame containing the results of model fitting.
n_features_in_ : int
Number of features seen during :term:`fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
display_feature_names_in_ : ndarray of shape (`n_features_in_`,)
Pretty names of features, used only during printing.
X_units_ : list[str] of length n_features
Units of each variable in the training dataset, `X`.
y_units_ : str | list[str] of length n_out
Units of each variable in the training dataset, `y`.
nout_ : int
Number of output dimensions.
selection_mask_ : ndarray of shape (`n_features_in_`,)
Mask of which features of `X` to use when `select_k_features` is set.
tempdir_ : Path
Path to the temporary equations directory.
equation_file_ : Union[str, Path]
Output equation file name produced by the julia backend.
julia_state_stream_ : ndarray
The serialized state for the julia SymbolicRegression.jl backend (after fitting),
stored as an array of uint8, produced by Julia's Serialization.serialize function.
julia_options_stream_ : ndarray
The serialized julia options, stored as an array of uint8,
equation_file_contents_ : list[pandas.DataFrame]
Contents of the equation file output by the Julia backend.
show_pickle_warnings_ : bool
Whether to show warnings about what attributes can be pickled.
Examples
--------
```python
>>> import numpy as np
>>> from pysr import PySRRegressor
>>> randstate = np.random.RandomState(0)
>>> X = 2 * randstate.randn(100, 5)
>>> # y = 2.5382 * cos(x_3) + x_0 - 0.5
>>> y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5
>>> model = PySRRegressor(
... niterations=40,
... binary_operators=["+", "*"],
... unary_operators=[
... "cos",
... "exp",
... "sin",
... "inv(x) = 1/x", # Custom operator (julia syntax)
... ],
... model_selection="best",
... elementwise_loss="loss(x, y) = (x - y)^2", # Custom loss function (julia syntax)
... )
>>> model.fit(X, y)
>>> model
PySRRegressor.equations_ = [
0 0.000000 3.8552167 3.360272e+01 1
1 1.189847 (x0 * x0) 3.110905e+00 3
2 0.010626 ((x0 * x0) + -0.25573406) 3.045491e+00 5
3 0.896632 (cos(x3) + (x0 * x0)) 1.242382e+00 6
4 0.811362 ((x0 * x0) + (cos(x3) * 2.4384754)) 2.451971e-01 8
5 >>>> 13.733371 (((cos(x3) * 2.5382) + (x0 * x0)) + -0.5) 2.889755e-13 10
6 0.194695 ((x0 * x0) + (((cos(x3) + -0.063180044) * 2.53... 1.957723e-13 12
7 0.006988 ((x0 * x0) + (((cos(x3) + -0.32505524) * 1.538... 1.944089e-13 13
8 0.000955 (((((x0 * x0) + cos(x3)) + -0.8251649) + (cos(... 1.940381e-13 15
]
>>> model.score(X, y)
1.0
>>> model.predict(np.array([1,2,3,4,5]))
array([-1.15907818, -1.15907818, -1.15907818, -1.15907818, -1.15907818])
```
"""
equations_: Union[pd.DataFrame, List[pd.DataFrame], None]
n_features_in_: int
feature_names_in_: ArrayLike[str]
display_feature_names_in_: ArrayLike[str]
complexity_of_variables_: Union[int, float, List[Union[int, float]], None]
X_units_: Union[ArrayLike[str], None]
y_units_: Union[str, ArrayLike[str], None]
nout_: int
selection_mask_: Union[NDArray[np.bool_], None]
tempdir_: Path
equation_file_: PathLike
julia_state_stream_: Union[NDArray[np.uint8], None]
julia_options_stream_: Union[NDArray[np.uint8], None]
equation_file_contents_: Union[List[pd.DataFrame], None]
show_pickle_warnings_: bool
def __init__(
self,
model_selection: Literal["best", "accuracy", "score"] = "best",
*,
binary_operators: Optional[List[str]] = None,
unary_operators: Optional[List[str]] = None,
niterations: int = 40,
populations: int = 15,
population_size: int = 33,
max_evals: Optional[int] = None,
maxsize: int = 20,
maxdepth: Optional[int] = None,
warmup_maxsize_by: Optional[float] = None,
timeout_in_seconds: Optional[float] = None,
constraints: Optional[Dict[str, Union[int, Tuple[int, int]]]] = None,
nested_constraints: Optional[Dict[str, Dict[str, int]]] = None,
elementwise_loss: Optional[str] = None,
loss_function: Optional[str] = None,
complexity_of_operators: Optional[Dict[str, Union[int, float]]] = None,
complexity_of_constants: Union[int, float] = 1,
complexity_of_variables: Optional[Union[int, float]] = None,
parsimony: float = 0.0032,
dimensional_constraint_penalty: Optional[float] = None,
dimensionless_constants_only: bool = False,
use_frequency: bool = True,
use_frequency_in_tournament: bool = True,
adaptive_parsimony_scaling: float = 20.0,
alpha: float = 0.1,
annealing: bool = False,
early_stop_condition: Optional[Union[float, str]] = None,
ncycles_per_iteration: int = 550,
fraction_replaced: float = 0.000364,
fraction_replaced_hof: float = 0.035,
weight_add_node: float = 0.79,
weight_insert_node: float = 5.1,
weight_delete_node: float = 1.7,
weight_do_nothing: float = 0.21,
weight_mutate_constant: float = 0.048,
weight_mutate_operator: float = 0.47,
weight_swap_operands: float = 0.1,
weight_randomize: float = 0.00023,
weight_simplify: float = 0.0020,
weight_optimize: float = 0.0,
crossover_probability: float = 0.066,
skip_mutation_failures: bool = True,
migration: bool = True,
hof_migration: bool = True,
topn: int = 12,
should_simplify: Optional[bool] = None,
should_optimize_constants: bool = True,
optimizer_algorithm: Literal["BFGS", "NelderMead"] = "BFGS",
optimizer_nrestarts: int = 2,
optimize_probability: float = 0.14,
optimizer_iterations: int = 8,
perturbation_factor: float = 0.076,
tournament_selection_n: int = 10,
tournament_selection_p: float = 0.86,
procs: int = cpu_count(),
multithreading: Optional[bool] = None,
cluster_manager: Optional[
Literal["slurm", "pbs", "lsf", "sge", "qrsh", "scyld", "htc"]
] = None,
heap_size_hint_in_bytes: Optional[int] = None,
batching: bool = False,
batch_size: int = 50,
fast_cycle: bool = False,
turbo: bool = False,
bumper: bool = False,
precision: int = 32,
enable_autodiff: bool = False,
random_state=None,
deterministic: bool = False,
warm_start: bool = False,
verbosity: int = 1,
update_verbosity: Optional[int] = None,
print_precision: int = 5,
progress: bool = True,
equation_file: Optional[str] = None,
temp_equation_file: bool = False,
tempdir: Optional[str] = None,
delete_tempfiles: bool = True,
update: bool = False,
output_jax_format: bool = False,
output_torch_format: bool = False,
extra_sympy_mappings: Optional[Dict[str, Callable]] = None,
extra_torch_mappings: Optional[Dict[Callable, Callable]] = None,
extra_jax_mappings: Optional[Dict[Callable, str]] = None,
denoise: bool = False,
select_k_features: Optional[int] = None,
**kwargs,
):
# Hyperparameters
# - Model search parameters
self.model_selection = model_selection
self.binary_operators = binary_operators
self.unary_operators = unary_operators
self.niterations = niterations
self.populations = populations
self.population_size = population_size
self.ncycles_per_iteration = ncycles_per_iteration
# - Equation Constraints
self.maxsize = maxsize
self.maxdepth = maxdepth
self.constraints = constraints
self.nested_constraints = nested_constraints
self.warmup_maxsize_by = warmup_maxsize_by
self.should_simplify = should_simplify
# - Early exit conditions:
self.max_evals = max_evals
self.timeout_in_seconds = timeout_in_seconds
self.early_stop_condition = early_stop_condition
# - Loss parameters
self.elementwise_loss = elementwise_loss
self.loss_function = loss_function
self.complexity_of_operators = complexity_of_operators
self.complexity_of_constants = complexity_of_constants
self.complexity_of_variables = complexity_of_variables
self.parsimony = parsimony
self.dimensional_constraint_penalty = dimensional_constraint_penalty
self.dimensionless_constants_only = dimensionless_constants_only
self.use_frequency = use_frequency
self.use_frequency_in_tournament = use_frequency_in_tournament
self.adaptive_parsimony_scaling = adaptive_parsimony_scaling
self.alpha = alpha
self.annealing = annealing
# - Evolutionary search parameters
# -- Mutation parameters
self.weight_add_node = weight_add_node
self.weight_insert_node = weight_insert_node
self.weight_delete_node = weight_delete_node
self.weight_do_nothing = weight_do_nothing
self.weight_mutate_constant = weight_mutate_constant
self.weight_mutate_operator = weight_mutate_operator
self.weight_swap_operands = weight_swap_operands
self.weight_randomize = weight_randomize
self.weight_simplify = weight_simplify
self.weight_optimize = weight_optimize
self.crossover_probability = crossover_probability
self.skip_mutation_failures = skip_mutation_failures
# -- Migration parameters
self.migration = migration
self.hof_migration = hof_migration
self.fraction_replaced = fraction_replaced
self.fraction_replaced_hof = fraction_replaced_hof
self.topn = topn
# -- Constants parameters
self.should_optimize_constants = should_optimize_constants
self.optimizer_algorithm = optimizer_algorithm
self.optimizer_nrestarts = optimizer_nrestarts
self.optimize_probability = optimize_probability
self.optimizer_iterations = optimizer_iterations
self.perturbation_factor = perturbation_factor
# -- Selection parameters
self.tournament_selection_n = tournament_selection_n
self.tournament_selection_p = tournament_selection_p
# -- Performance parameters
self.procs = procs
self.multithreading = multithreading
self.cluster_manager = cluster_manager
self.heap_size_hint_in_bytes = heap_size_hint_in_bytes
self.batching = batching
self.batch_size = batch_size
self.fast_cycle = fast_cycle
self.turbo = turbo
self.bumper = bumper
self.precision = precision
self.enable_autodiff = enable_autodiff
self.random_state = random_state
self.deterministic = deterministic
self.warm_start = warm_start
# Additional runtime parameters
# - Runtime user interface
self.verbosity = verbosity
self.update_verbosity = update_verbosity
self.print_precision = print_precision
self.progress = progress
# - Project management
self.equation_file = equation_file
self.temp_equation_file = temp_equation_file
self.tempdir = tempdir
self.delete_tempfiles = delete_tempfiles
self.update = update
self.output_jax_format = output_jax_format
self.output_torch_format = output_torch_format
self.extra_sympy_mappings = extra_sympy_mappings
self.extra_jax_mappings = extra_jax_mappings
self.extra_torch_mappings = extra_torch_mappings
# Pre-modelling transformation
self.denoise = denoise
self.select_k_features = select_k_features
# Once all valid parameters have been assigned handle the
# deprecated kwargs
if len(kwargs) > 0: # pragma: no cover
for k, v in kwargs.items():
# Handle renamed kwargs
if k in DEPRECATED_KWARGS:
updated_kwarg_name = DEPRECATED_KWARGS[k]
setattr(self, updated_kwarg_name, v)
warnings.warn(
f"`{k}` has been renamed to `{updated_kwarg_name}` in PySRRegressor. "
"Please use that instead.",
FutureWarning,
)
# Handle kwargs that have been moved to the fit method
elif k in ["weights", "variable_names", "Xresampled"]:
warnings.warn(
f"`{k}` is a data-dependent parameter and should be passed when fit is called. "
f"Ignoring parameter; please pass `{k}` during the call to fit instead.",
FutureWarning,
)
elif k == "julia_project":
warnings.warn(
"The `julia_project` parameter has been deprecated. To use a custom "
"julia project, please see `https://astroautomata.com/PySR/backend`.",
FutureWarning,
)
elif k == "julia_kwargs":
warnings.warn(
"The `julia_kwargs` parameter has been deprecated. To pass custom "
"keyword arguments to the julia backend, you should use environment variables. "
"See the Julia documentation for more information.",
FutureWarning,
)
else:
suggested_keywords = _suggest_keywords(PySRRegressor, k)
err_msg = (
f"`{k}` is not a valid keyword argument for PySRRegressor."
)
if len(suggested_keywords) > 0:
err_msg += f" Did you mean {', '.join(map(lambda s: f'`{s}`', suggested_keywords))}?"
raise TypeError(err_msg)
@classmethod
def from_file(
cls,
equation_file: PathLike,
*,
binary_operators: Optional[List[str]] = None,
unary_operators: Optional[List[str]] = None,
n_features_in: Optional[int] = None,
feature_names_in: Optional[ArrayLike[str]] = None,
selection_mask: Optional[NDArray[np.bool_]] = None,
nout: int = 1,
verbosity=1,
**pysr_kwargs,
):
"""
Create a model from a saved model checkpoint or equation file.
Parameters
----------
equation_file : str or Path
Path to a pickle file containing a saved model, or a csv file
containing equations.
binary_operators : list[str]
The same binary operators used when creating the model.
Not needed if loading from a pickle file.
unary_operators : list[str]
The same unary operators used when creating the model.
Not needed if loading from a pickle file.
n_features_in : int
Number of features passed to the model.
Not needed if loading from a pickle file.
feature_names_in : list[str]
Names of the features passed to the model.
Not needed if loading from a pickle file.
selection_mask : NDArray[np.bool_]
If using `select_k_features`, you must pass `model.selection_mask_` here.
Not needed if loading from a pickle file.
nout : int
Number of outputs of the model.
Not needed if loading from a pickle file.
Default is `1`.
verbosity : int
What verbosity level to use. 0 means minimal print statements.
**pysr_kwargs : dict
Any other keyword arguments to initialize the PySRRegressor object.
These will overwrite those stored in the pickle file.
Not needed if loading from a pickle file.
Returns
-------
model : PySRRegressor
The model with fitted equations.
"""
pkl_filename = _csv_filename_to_pkl_filename(equation_file)
# Try to load model from <equation_file>.pkl
if verbosity > 0:
print(f"Checking if {pkl_filename} exists...")
if os.path.exists(pkl_filename):
if verbosity > 0:
print(f"Loading model from {pkl_filename}")
assert binary_operators is None
assert unary_operators is None
assert n_features_in is None
with open(pkl_filename, "rb") as f:
model = pkl.load(f)
# Change equation_file_ to be in the same dir as the pickle file
base_dir = os.path.dirname(pkl_filename)
base_equation_file = os.path.basename(model.equation_file_)
model.equation_file_ = os.path.join(base_dir, base_equation_file)
# Update any parameters if necessary, such as
# extra_sympy_mappings:
model.set_params(**pysr_kwargs)
if "equations_" not in model.__dict__ or model.equations_ is None:
model.refresh()
return model
# Else, we re-create it.
if verbosity > 0:
print(
f"{pkl_filename} does not exist, "
"so we must create the model from scratch."
)
assert binary_operators is not None or unary_operators is not None
assert n_features_in is not None
# TODO: copy .bkup file if exists.
model = cls(
equation_file=str(equation_file),
binary_operators=binary_operators,
unary_operators=unary_operators,
**pysr_kwargs,
)
model.nout_ = nout
model.n_features_in_ = n_features_in
if feature_names_in is None:
model.feature_names_in_ = np.array([f"x{i}" for i in range(n_features_in)])
model.display_feature_names_in_ = np.array(
[f"x{_subscriptify(i)}" for i in range(n_features_in)]
)
else:
assert len(feature_names_in) == n_features_in
model.feature_names_in_ = feature_names_in
model.display_feature_names_in_ = feature_names_in
if selection_mask is None:
model.selection_mask_ = np.ones(n_features_in, dtype=np.bool_)
else:
model.selection_mask_ = selection_mask
model.refresh(checkpoint_file=equation_file)
return model
def __repr__(self):
"""
Print all current equations fitted by the model.
The string `>>>>` denotes which equation is selected by the
`model_selection`.
"""
if not hasattr(self, "equations_") or self.equations_ is None:
return "PySRRegressor.equations_ = None"
output = "PySRRegressor.equations_ = [\n"
equations = self.equations_
if not isinstance(equations, list):
all_equations = [equations]
else:
all_equations = equations
for i, equations in enumerate(all_equations):
selected = pd.Series([""] * len(equations), index=equations.index)
chosen_row = idx_model_selection(equations, self.model_selection)
selected[chosen_row] = ">>>>"
repr_equations = pd.DataFrame(
dict(
pick=selected,
score=equations["score"],
equation=equations["equation"],
loss=equations["loss"],
complexity=equations["complexity"],
)
)
if len(all_equations) > 1:
output += "[\n"
for line in repr_equations.__repr__().split("\n"):
output += "\t" + line + "\n"
if len(all_equations) > 1:
output += "]"
if i < len(all_equations) - 1:
output += ", "
output += "]"
return output
def __getstate__(self):
"""
Handle pickle serialization for PySRRegressor.
The Scikit-learn standard requires estimators to be serializable via
`pickle.dumps()`. However, some attributes do not support pickling
and need to be hidden, such as the JAX and Torch representations.
"""
state = self.__dict__
show_pickle_warning = not (
"show_pickle_warnings_" in state and not state["show_pickle_warnings_"]
)
state_keys_containing_lambdas = ["extra_sympy_mappings", "extra_torch_mappings"]
for state_key in state_keys_containing_lambdas:
if state[state_key] is not None and show_pickle_warning:
warnings.warn(
f"`{state_key}` cannot be pickled and will be removed from the "
"serialized instance. When loading the model, please redefine "
f"`{state_key}` at runtime."
)
state_keys_to_clear = state_keys_containing_lambdas
pickled_state = {
key: (None if key in state_keys_to_clear else value)
for key, value in state.items()
}
if ("equations_" in pickled_state) and (
pickled_state["equations_"] is not None
):
pickled_state["output_torch_format"] = False
pickled_state["output_jax_format"] = False
if self.nout_ == 1:
pickled_columns = ~pickled_state["equations_"].columns.isin(
["jax_format", "torch_format"]
)
pickled_state["equations_"] = (
pickled_state["equations_"].loc[:, pickled_columns].copy()
)
else:
pickled_columns = [
~dataframe.columns.isin(["jax_format", "torch_format"])
for dataframe in pickled_state["equations_"]
]
pickled_state["equations_"] = [
dataframe.loc[:, signle_pickled_columns]
for dataframe, signle_pickled_columns in zip(
pickled_state["equations_"], pickled_columns
)
]
return pickled_state
def _checkpoint(self):
"""Save the model's current state to a checkpoint file.
This should only be used internally by PySRRegressor.
"""
# Save model state:
self.show_pickle_warnings_ = False
with open(_csv_filename_to_pkl_filename(self.equation_file_), "wb") as f:
pkl.dump(self, f)
self.show_pickle_warnings_ = True
@property
def equations(self): # pragma: no cover
warnings.warn(
"PySRRegressor.equations is now deprecated. "
"Please use PySRRegressor.equations_ instead.",
FutureWarning,
)
return self.equations_
@property
def julia_options_(self):
"""The deserialized julia options."""
return jl_deserialize(self.julia_options_stream_)
@property
def julia_state_(self):
"""The deserialized state."""
return jl_deserialize(self.julia_state_stream_)
@property
def raw_julia_state_(self):
warnings.warn(
"PySRRegressor.raw_julia_state_ is now deprecated. "
"Please use PySRRegressor.julia_state_ instead, or julia_state_stream_ "
"for the raw stream of bytes.",
FutureWarning,
)
return self.julia_state_
def get_best(self, index=None) -> Union[pd.Series, List[pd.Series]]:
"""
Get best equation using `model_selection`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from `self.equations_`,
give the row number here. This overrides the `model_selection`
parameter. If there are multiple output features, then pass
a list of indices with the order the same as the output feature.
Returns
-------
best_equation : pandas.Series
Dictionary representing the best expression found.
Raises
------
NotImplementedError
Raised when an invalid model selection strategy is provided.
"""
check_is_fitted(self, attributes=["equations_"])
if index is not None:
if isinstance(self.equations_, list):
assert isinstance(
index, list
), "With multiple output features, index must be a list."
return [eq.iloc[i] for eq, i in zip(self.equations_, index)]
else:
equations_ = cast(pd.DataFrame, self.equations_)
return cast(pd.Series, equations_.iloc[index])
if isinstance(self.equations_, list):
return [
cast(pd.Series, eq.loc[idx_model_selection(eq, self.model_selection)])
for eq in self.equations_
]
else:
equations_ = cast(pd.DataFrame, self.equations_)
return cast(
pd.Series,
equations_.loc[idx_model_selection(equations_, self.model_selection)],
)
def _setup_equation_file(self):
"""
Set the full pathname of the equation file.
This is performed using `tempdir` and
`equation_file`.
"""
# Cast tempdir string as a Path object
self.tempdir_ = Path(tempfile.mkdtemp(dir=self.tempdir))
if self.temp_equation_file:
self.equation_file_ = self.tempdir_ / "hall_of_fame.csv"
elif self.equation_file is None:
if self.warm_start and (
hasattr(self, "equation_file_") and self.equation_file_
):
pass
else:
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
self.equation_file_ = "hall_of_fame_" + date_time + ".csv"
else:
self.equation_file_ = self.equation_file
self.equation_file_contents_ = None
def _validate_and_modify_params(self) -> _DynamicallySetParams:
"""
Ensure parameters passed at initialization are valid.
Also returns a dictionary of parameters to update from their
values given at initialization.
Returns
-------
packed_modified_params : dict
Dictionary of parameters to modify from their initialized
values. For example, default parameters are set here
when a parameter is left set to `None`.
"""
# Immutable parameter validation
# Ensure instance parameters are allowable values:
if self.tournament_selection_n > self.population_size:
raise ValueError(
"`tournament_selection_n` parameter must be smaller than `population_size`."
)
if self.maxsize > 40:
warnings.warn(
"Note: Using a large maxsize for the equation search will be "
"exponentially slower and use significant memory."
)
elif self.maxsize < 7:
raise ValueError("PySR requires a maxsize of at least 7")
if self.deterministic and not (
self.multithreading in [False, None]
and self.procs == 0
and self.random_state is not None
):
raise ValueError(
"To ensure deterministic searches, you must set `random_state` to a seed, "
"`procs` to `0`, and `multithreading` to `False` or `None`."
)
if self.random_state is not None and (
not self.deterministic or self.procs != 0
):
warnings.warn(
"Note: Setting `random_state` without also setting `deterministic` "
"to True and `procs` to 0 will result in non-deterministic searches. "
)
if self.elementwise_loss is not None and self.loss_function is not None:
raise ValueError(
"You cannot set both `elementwise_loss` and `loss_function`."
)
# NotImplementedError - Values that could be supported at a later time
if self.optimizer_algorithm not in VALID_OPTIMIZER_ALGORITHMS:
raise NotImplementedError(
f"PySR currently only supports the following optimizer algorithms: {VALID_OPTIMIZER_ALGORITHMS}"
)
param_container = _DynamicallySetParams(
binary_operators=["+", "*", "-", "/"],
unary_operators=[],
maxdepth=self.maxsize,
constraints={},
multithreading=self.procs != 0 and self.cluster_manager is None,
batch_size=1,
update_verbosity=int(self.verbosity),
progress=self.progress,
warmup_maxsize_by=0.0,
)
for param_name in map(lambda x: x.name, fields(_DynamicallySetParams)):
user_param_value = getattr(self, param_name)
if user_param_value is None:
# Leave as the default in DynamicallySetParams
...
else:
# If user has specified it, we will override the default.
# However, there are some special cases to mutate it:
new_param_value = _mutate_parameter(param_name, user_param_value)
setattr(param_container, param_name, new_param_value)
# TODO: This should just be part of the __init__ of _DynamicallySetParams
assert (
len(param_container.binary_operators) > 0
or len(param_container.unary_operators) > 0
), "At least one operator must be provided."
return param_container
def _validate_and_set_fit_params(
self,
X,
y,
Xresampled,
weights,
variable_names,
complexity_of_variables,
X_units,
y_units,
) -> Tuple[
ndarray,
ndarray,
Optional[ndarray],
Optional[ndarray],
ArrayLike[str],
Union[int, float, List[Union[int, float]]],
Optional[ArrayLike[str]],
Optional[Union[str, ArrayLike[str]]],
]:
"""
Validate the parameters passed to the :term`fit` method.
This method also sets the `nout_` attribute.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape `(n_samples, n_features)`.
y : ndarray | pandas.DataFrame}
Target values of shape `(n_samples,)` or `(n_samples, n_targets)`.
Will be cast to `X`'s dtype if necessary.
Xresampled : ndarray | pandas.DataFrame
Resampled training data used for denoising,
of shape `(n_resampled, n_features)`.
weights : ndarray | pandas.DataFrame
Weight array of the same shape as `y`.
Each element is how to weight the mean-square-error loss
for that particular element of y.
variable_names : ndarray of length n_features
Names of each feature in the training dataset, `X`.
complexity_of_variables : int | float | list[int | float]
Complexity of each feature in the training dataset, `X`.
X_units : list[str] of length n_features
Units of each feature in the training dataset, `X`.
y_units : str | list[str] of length n_out
Units of each feature in the training dataset, `y`.
Returns
-------
X_validated : ndarray of shape (n_samples, n_features)
Validated training data.
y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
Validated target data.
Xresampled : ndarray of shape (n_resampled, n_features)
Validated resampled training data used for denoising.
variable_names_validated : list[str] of length n_features
Validated list of variable names for each feature in `X`.
X_units : list[str] of length n_features
Validated units for `X`.
y_units : str | list[str] of length n_out
Validated units for `y`.
"""
if isinstance(X, pd.DataFrame):
if variable_names:
variable_names = None
warnings.warn(
"`variable_names` has been reset to `None` as `X` is a DataFrame. "
"Using DataFrame column names instead."
)
if (
pd.api.types.is_object_dtype(X.columns)
and X.columns.str.contains(" ").any()
):
X.columns = X.columns.str.replace(" ", "_")
warnings.warn(
"Spaces in DataFrame column names are not supported. "
"Spaces have been replaced with underscores. \n"
"Please rename the columns to valid names."
)
elif variable_names and any([" " in name for name in variable_names]):
variable_names = [name.replace(" ", "_") for name in variable_names]
warnings.warn(
"Spaces in `variable_names` are not supported. "
"Spaces have been replaced with underscores. \n"
"Please use valid names instead."
)
if (
complexity_of_variables is not None
and self.complexity_of_variables is not None
):
raise ValueError(
"You cannot set `complexity_of_variables` at both `fit` and `__init__`. "
"Pass it at `__init__` to set it to global default, OR use `fit` to set it for "
"each variable individually."
)
elif complexity_of_variables is not None:
complexity_of_variables = complexity_of_variables
elif self.complexity_of_variables is not None:
complexity_of_variables = self.complexity_of_variables
else:
complexity_of_variables = 1
# Data validation and feature name fetching via sklearn
# This method sets the n_features_in_ attribute
if Xresampled is not None:
Xresampled = check_array(Xresampled)
if weights is not None:
weights = check_array(weights, ensure_2d=False)
check_consistent_length(weights, y)
X, y = self._validate_data_X_y(X, y)
self.feature_names_in_ = _safe_check_feature_names_in(
self, variable_names, generate_names=False
)
if self.feature_names_in_ is None:
self.feature_names_in_ = np.array([f"x{i}" for i in range(X.shape[1])])
self.display_feature_names_in_ = np.array(
[f"x{_subscriptify(i)}" for i in range(X.shape[1])]
)
variable_names = self.feature_names_in_
else:
self.display_feature_names_in_ = self.feature_names_in_
variable_names = self.feature_names_in_
# Handle multioutput data
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
y = y.reshape(-1)
elif len(y.shape) == 2:
self.nout_ = y.shape[1]
else:
raise NotImplementedError("y shape not supported!")
self.complexity_of_variables_ = copy.deepcopy(complexity_of_variables)
self.X_units_ = copy.deepcopy(X_units)
self.y_units_ = copy.deepcopy(y_units)
return (
X,
y,
Xresampled,
weights,
variable_names,
complexity_of_variables,
X_units,
y_units,
)
def _validate_data_X_y(self, X, y) -> Tuple[ndarray, ndarray]:
raw_out = self._validate_data(X=X, y=y, reset=True, multi_output=True) # type: ignore
return cast(Tuple[ndarray, ndarray], raw_out)
def _validate_data_X(self, X) -> Tuple[ndarray]:
raw_out = self._validate_data(X=X, reset=False) # type: ignore
return cast(Tuple[ndarray], raw_out)
def _pre_transform_training_data(
self,
X: ndarray,
y: ndarray,
Xresampled: Union[ndarray, None],
variable_names: ArrayLike[str],
complexity_of_variables: Union[int, float, List[Union[int, float]]],
X_units: Union[ArrayLike[str], None],
y_units: Union[ArrayLike[str], str, None],
random_state: np.random.RandomState,
):
"""
Transform the training data before fitting the symbolic regressor.
This method also updates/sets the `selection_mask_` attribute.
Parameters
----------
X : ndarray
Training data of shape (n_samples, n_features).
y : ndarray
Target values of shape (n_samples,) or (n_samples, n_targets).
Will be cast to X's dtype if necessary.
Xresampled : ndarray | None
Resampled training data, of shape `(n_resampled, n_features)`,
used for denoising.
variable_names : list[str]
Names of each variable in the training dataset, `X`.
Of length `n_features`.
complexity_of_variables : int | float | list[int | float]
Complexity of each variable in the training dataset, `X`.
X_units : list[str]
Units of each variable in the training dataset, `X`.
y_units : str | list[str]
Units of each variable in the training dataset, `y`.
random_state : int | np.RandomState
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`. Default is `None`.
Returns
-------
X_transformed : ndarray of shape (n_samples, n_features)
Transformed training data. n_samples will be equal to
`Xresampled.shape[0]` if `self.denoise` is `True`,
and `Xresampled is not None`, otherwise it will be
equal to `X.shape[0]`. n_features will be equal to
`self.select_k_features` if `self.select_k_features is not None`,
otherwise it will be equal to `X.shape[1]`
y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
Transformed target data. n_samples will be equal to
`Xresampled.shape[0]` if `self.denoise` is `True`,
and `Xresampled is not None`, otherwise it will be
equal to `X.shape[0]`.
variable_names_transformed : list[str] of length n_features
Names of each variable in the transformed dataset,
`X_transformed`.
X_units_transformed : list[str] of length n_features
Units of each variable in the transformed dataset.
y_units_transformed : str | list[str] of length n_out
Units of each variable in the transformed dataset.
"""
# Feature selection transformation
if self.select_k_features:
selection_mask = run_feature_selection(
X, y, self.select_k_features, random_state=random_state
)
X = X[:, selection_mask]
if Xresampled is not None:
Xresampled = Xresampled[:, selection_mask]
# Reduce variable_names to selection
variable_names = cast(
ArrayLike[str],
[
variable_names[i]
for i in range(len(variable_names))
if selection_mask[i]
],
)
if isinstance(complexity_of_variables, list):
complexity_of_variables = [
complexity_of_variables[i]
for i in range(len(complexity_of_variables))
if selection_mask[i]
]
self.complexity_of_variables_ = copy.deepcopy(complexity_of_variables)
if X_units is not None:
X_units = cast(
ArrayLike[str],
[X_units[i] for i in range(len(X_units)) if selection_mask[i]],
)
self.X_units_ = copy.deepcopy(X_units)
# Re-perform data validation and feature name updating
X, y = self._validate_data_X_y(X, y)
# Update feature names with selected variable names
self.selection_mask_ = selection_mask
self.feature_names_in_ = _check_feature_names_in(self, variable_names)
self.display_feature_names_in_ = self.feature_names_in_
print(f"Using features {self.feature_names_in_}")
# Denoising transformation
if self.denoise:
if self.nout_ > 1:
X, y = multi_denoise(
X, y, Xresampled=Xresampled, random_state=random_state
)
else:
X, y = denoise(X, y, Xresampled=Xresampled, random_state=random_state)
return X, y, variable_names, complexity_of_variables, X_units, y_units
def _run(
self,
X: ndarray,
y: ndarray,
runtime_params: _DynamicallySetParams,
weights: Optional[ndarray],
seed: int,
):
"""
Run the symbolic regression fitting process on the julia backend.
Parameters
----------
X : ndarray
Training data of shape `(n_samples, n_features)`.
y : ndarray
Target values of shape `(n_samples,)` or `(n_samples, n_targets)`.
Will be cast to `X`'s dtype if necessary.
runtime_params : DynamicallySetParams
Dynamically set versions of some parameters passed in __init__.
weights : ndarray | None
Weight array of the same shape as `y`.
Each element is how to weight the mean-square-error loss
for that particular element of y.
seed : int
Random seed for julia backend process.
Returns
-------
self : object
Reference to `self` with fitted attributes.
Raises
------
ImportError
Raised when the julia backend fails to import a package.
"""
# Need to be global as we don't want to recreate/reinstate julia for
# every new instance of PySRRegressor
global ALREADY_RAN
# These are the parameters which may be modified from the ones
# specified in init, so we define them here locally:
binary_operators = runtime_params.binary_operators
unary_operators = runtime_params.unary_operators
maxdepth = runtime_params.maxdepth
constraints = runtime_params.constraints
multithreading = runtime_params.multithreading
batch_size = runtime_params.batch_size
update_verbosity = runtime_params.update_verbosity
progress = runtime_params.progress
warmup_maxsize_by = runtime_params.warmup_maxsize_by
nested_constraints = self.nested_constraints
complexity_of_operators = self.complexity_of_operators
complexity_of_variables = self.complexity_of_variables_
cluster_manager = self.cluster_manager
# Start julia backend processes
if not ALREADY_RAN and update_verbosity != 0:
print("Compiling Julia backend...")
if cluster_manager is not None:
cluster_manager = _load_cluster_manager(cluster_manager)
# TODO(mcranmer): These functions should be part of this class.
binary_operators, unary_operators = _maybe_create_inline_operators(
binary_operators=binary_operators,
unary_operators=unary_operators,
extra_sympy_mappings=self.extra_sympy_mappings,
)
constraints = _process_constraints(
binary_operators=binary_operators,
unary_operators=unary_operators,
constraints=constraints,
)
una_constraints = [constraints[op] for op in unary_operators]
bin_constraints = [constraints[op] for op in binary_operators]
# Parse dict into Julia Dict for nested constraints::
if nested_constraints is not None:
nested_constraints_str = "Dict("
for outer_k, outer_v in nested_constraints.items():
nested_constraints_str += f"({outer_k}) => Dict("
for inner_k, inner_v in outer_v.items():
nested_constraints_str += f"({inner_k}) => {inner_v}, "
nested_constraints_str += "), "
nested_constraints_str += ")"
nested_constraints = jl.seval(nested_constraints_str)
# Parse dict into Julia Dict for complexities:
if complexity_of_operators is not None:
complexity_of_operators_str = "Dict("
for k, v in complexity_of_operators.items():
complexity_of_operators_str += f"({k}) => {v}, "
complexity_of_operators_str += ")"
complexity_of_operators = jl.seval(complexity_of_operators_str)
# TODO: Refactor this into helper function
if isinstance(complexity_of_variables, list):
complexity_of_variables = jl_array(complexity_of_variables)
custom_loss = jl.seval(
str(self.elementwise_loss)
if self.elementwise_loss is not None
else "nothing"
)
custom_full_objective = jl.seval(
str(self.loss_function) if self.loss_function is not None else "nothing"
)
early_stop_condition = jl.seval(
str(self.early_stop_condition)
if self.early_stop_condition is not None
else "nothing"
)
load_required_packages(
turbo=self.turbo,
bumper=self.bumper,
enable_autodiff=self.enable_autodiff,
cluster_manager=cluster_manager,
)
mutation_weights = SymbolicRegression.MutationWeights(
mutate_constant=self.weight_mutate_constant,
mutate_operator=self.weight_mutate_operator,
swap_operands=self.weight_swap_operands,
add_node=self.weight_add_node,
insert_node=self.weight_insert_node,
delete_node=self.weight_delete_node,
simplify=self.weight_simplify,
randomize=self.weight_randomize,
do_nothing=self.weight_do_nothing,
optimize=self.weight_optimize,
)
jl_binary_operators: List[Any] = []
jl_unary_operators: List[Any] = []
for input_list, output_list, name in [
(binary_operators, jl_binary_operators, "binary"),
(unary_operators, jl_unary_operators, "unary"),
]:
for op in input_list:
jl_op = jl.seval(op)
if not jl_is_function(jl_op):
raise ValueError(
f"When building `{name}_operators`, `'{op}'` did not return a Julia function"
)
output_list.append(jl_op)
# Call to Julia backend.
# See https://github.com/MilesCranmer/SymbolicRegression.jl/blob/master/src/OptionsStruct.jl
options = SymbolicRegression.Options(
binary_operators=jl_array(jl_binary_operators, dtype=jl.Function),
unary_operators=jl_array(jl_unary_operators, dtype=jl.Function),
bin_constraints=jl_array(bin_constraints),
una_constraints=jl_array(una_constraints),
complexity_of_operators=complexity_of_operators,
complexity_of_constants=self.complexity_of_constants,
complexity_of_variables=complexity_of_variables,
nested_constraints=nested_constraints,
elementwise_loss=custom_loss,
loss_function=custom_full_objective,
maxsize=int(self.maxsize),
output_file=_escape_filename(self.equation_file_),
npopulations=int(self.populations),
batching=self.batching,
batch_size=int(min([batch_size, len(X)]) if self.batching else len(X)),
mutation_weights=mutation_weights,
tournament_selection_p=self.tournament_selection_p,
tournament_selection_n=self.tournament_selection_n,
# These have the same name:
parsimony=self.parsimony,
dimensional_constraint_penalty=self.dimensional_constraint_penalty,
dimensionless_constants_only=self.dimensionless_constants_only,
alpha=self.alpha,
maxdepth=maxdepth,
fast_cycle=self.fast_cycle,
turbo=self.turbo,
bumper=self.bumper,
enable_autodiff=self.enable_autodiff,
migration=self.migration,
hof_migration=self.hof_migration,
fraction_replaced_hof=self.fraction_replaced_hof,
should_simplify=self.should_simplify,
should_optimize_constants=self.should_optimize_constants,
warmup_maxsize_by=warmup_maxsize_by,
use_frequency=self.use_frequency,
use_frequency_in_tournament=self.use_frequency_in_tournament,
adaptive_parsimony_scaling=self.adaptive_parsimony_scaling,
npop=self.population_size,
ncycles_per_iteration=self.ncycles_per_iteration,
fraction_replaced=self.fraction_replaced,
topn=self.topn,
print_precision=self.print_precision,
optimizer_algorithm=self.optimizer_algorithm,
optimizer_nrestarts=self.optimizer_nrestarts,
optimizer_probability=self.optimize_probability,
optimizer_iterations=self.optimizer_iterations,
perturbation_factor=self.perturbation_factor,
annealing=self.annealing,
timeout_in_seconds=self.timeout_in_seconds,
crossover_probability=self.crossover_probability,
skip_mutation_failures=self.skip_mutation_failures,
max_evals=self.max_evals,
early_stop_condition=early_stop_condition,
seed=seed,
deterministic=self.deterministic,
define_helper_functions=False,
)
self.julia_options_stream_ = jl_serialize(options)
# Convert data to desired precision
test_X = np.array(X)
is_complex = np.issubdtype(test_X.dtype, np.complexfloating)
is_real = not is_complex
if is_real:
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self.precision]
else:
np_dtype = {32: np.complex64, 64: np.complex128}[self.precision]
# This converts the data into a Julia array:
jl_X = jl_array(np.array(X, dtype=np_dtype).T)
if len(y.shape) == 1:
jl_y = jl_array(np.array(y, dtype=np_dtype))
else:
jl_y = jl_array(np.array(y, dtype=np_dtype).T)
if weights is not None:
if len(weights.shape) == 1:
jl_weights = jl_array(np.array(weights, dtype=np_dtype))
else:
jl_weights = jl_array(np.array(weights, dtype=np_dtype).T)
else:
jl_weights = None
if self.procs == 0 and not multithreading:
parallelism = "serial"
elif multithreading:
parallelism = "multithreading"
else:
parallelism = "multiprocessing"
cprocs = (
None if parallelism in ["serial", "multithreading"] else int(self.procs)
)
if len(y.shape) > 1:
# We set these manually so that they respect Python's 0 indexing
# (by default Julia will use y1, y2...)
jl_y_variable_names = jl_array(
[f"y{_subscriptify(i)}" for i in range(y.shape[1])]
)
else:
jl_y_variable_names = None
PythonCall.GC.disable()
out = SymbolicRegression.equation_search(
jl_X,
jl_y,
weights=jl_weights,
niterations=int(self.niterations),
variable_names=jl_array([str(v) for v in self.feature_names_in_]),
display_variable_names=jl_array(
[str(v) for v in self.display_feature_names_in_]
),
y_variable_names=jl_y_variable_names,
X_units=jl_array(self.X_units_),
y_units=(
jl_array(self.y_units_)
if isinstance(self.y_units_, list)
else self.y_units_
),
options=options,
numprocs=cprocs,
parallelism=parallelism,
saved_state=self.julia_state_,
return_state=True,
addprocs_function=cluster_manager,
heap_size_hint_in_bytes=self.heap_size_hint_in_bytes,
progress=progress and self.verbosity > 0 and len(y.shape) == 1,
verbosity=int(self.verbosity),
)
PythonCall.GC.enable()
self.julia_state_stream_ = jl_serialize(out)
# Set attributes
self.equations_ = self.get_hof()
if self.delete_tempfiles:
shutil.rmtree(self.tempdir_)
ALREADY_RAN = True
return self
def fit(
self,
X,
y,
Xresampled=None,
weights=None,
variable_names: Optional[ArrayLike[str]] = None,
complexity_of_variables: Optional[
Union[int, float, List[Union[int, float]]]
] = None,
X_units: Optional[ArrayLike[str]] = None,
y_units: Optional[Union[str, ArrayLike[str]]] = None,
) -> "PySRRegressor":
"""
Search for equations to fit the dataset and store them in `self.equations_`.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape (n_samples, n_features).
y : ndarray | pandas.DataFrame
Target values of shape (n_samples,) or (n_samples, n_targets).
Will be cast to X's dtype if necessary.
Xresampled : ndarray | pandas.DataFrame
Resampled training data, of shape (n_resampled, n_features),
to generate a denoised data on. This
will be used as the training data, rather than `X`.
weights : ndarray | pandas.DataFrame
Weight array of the same shape as `y`.
Each element is how to weight the mean-square-error loss
for that particular element of `y`. Alternatively,
if a custom `loss` was set, it will can be used
in arbitrary ways.
variable_names : list[str]
A list of names for the variables, rather than "x0", "x1", etc.
If `X` is a pandas dataframe, the column names will be used
instead of `variable_names`. Cannot contain spaces or special
characters. Avoid variable names which are also
function names in `sympy`, such as "N".
X_units : list[str]
A list of units for each variable in `X`. Each unit should be
a string representing a Julia expression. See DynamicQuantities.jl
https://symbolicml.org/DynamicQuantities.jl/dev/units/ for more
information.
y_units : str | list[str]
Similar to `X_units`, but as a unit for the target variable, `y`.
If `y` is a matrix, a list of units should be passed. If `X_units`
is given but `y_units` is not, then `y_units` will be arbitrary.
Returns
-------
self : object
Fitted estimator.
"""
# Init attributes that are not specified in BaseEstimator
if self.warm_start and hasattr(self, "julia_state_stream_"):
pass
else:
if hasattr(self, "julia_state_stream_"):
warnings.warn(
"The discovered expressions are being reset. "
"Please set `warm_start=True` if you wish to continue "
"to start a search where you left off.",
)
self.equations_ = None
self.nout_ = 1
self.selection_mask_ = None
self.julia_state_stream_ = None
self.julia_options_stream_ = None
self.complexity_of_variables_ = None
self.X_units_ = None
self.y_units_ = None
self._setup_equation_file()
runtime_params = self._validate_and_modify_params()
(
X,
y,
Xresampled,
weights,
variable_names,
complexity_of_variables,
X_units,
y_units,
) = self._validate_and_set_fit_params(
X,
y,
Xresampled,
weights,
variable_names,
complexity_of_variables,
X_units,
y_units,
)
if X.shape[0] > 10000 and not self.batching:
warnings.warn(
"Note: you are running with more than 10,000 datapoints. "
"You should consider turning on batching (https://astroautomata.com/PySR/options/#batching). "
"You should also reconsider if you need that many datapoints. "
"Unless you have a large amount of noise (in which case you "
"should smooth your dataset first), generally < 10,000 datapoints "
"is enough to find a functional form with symbolic regression. "
"More datapoints will lower the search speed."
)
random_state = check_random_state(self.random_state) # For np random
seed = cast(int, random_state.randint(0, 2**31 - 1)) # For julia random
# Pre transformations (feature selection and denoising)
X, y, variable_names, complexity_of_variables, X_units, y_units = (
self._pre_transform_training_data(
X,
y,
Xresampled,
variable_names,
complexity_of_variables,
X_units,
y_units,
random_state,
)
)
# Warn about large feature counts (still warn if feature count is large
# after running feature selection)
if self.n_features_in_ >= 10:
warnings.warn(
"Note: you are running with 10 features or more. "
"Genetic algorithms like used in PySR scale poorly with large numbers of features. "
"You should run PySR for more `niterations` to ensure it can find "
"the correct variables, and consider using a larger `maxsize`."
)
# Assertion checks
use_custom_variable_names = variable_names is not None
# TODO: this is always true.
_check_assertions(
X,
use_custom_variable_names,
variable_names,
complexity_of_variables,
weights,
y,
X_units,
y_units,
)
# Initially, just save model parameters, so that
# it can be loaded from an early exit:
if not self.temp_equation_file:
self._checkpoint()
# Perform the search:
self._run(X, y, runtime_params, weights=weights, seed=seed)
# Then, after fit, we save again, so the pickle file contains
# the equations:
if not self.temp_equation_file:
self._checkpoint()
return self
def refresh(self, checkpoint_file: Optional[PathLike] = None) -> None:
"""
Update self.equations_ with any new options passed.
For example, updating `extra_sympy_mappings`
will require a `.refresh()` to update the equations.
Parameters
----------
checkpoint_file : str or Path
Path to checkpoint hall of fame file to be loaded.
The default will use the set `equation_file_`.
"""
if checkpoint_file is not None:
self.equation_file_ = checkpoint_file
self.equation_file_contents_ = None
check_is_fitted(self, attributes=["equation_file_"])
self.equations_ = self.get_hof()
def predict(self, X, index=None):
"""
Predict y from input X using the equation chosen by `model_selection`.
You may see what equation is used by printing this object. X should
have the same columns as the training data.
Parameters
----------
X : ndarray | pandas.DataFrame
Training data of shape `(n_samples, n_features)`.
index : int | list[int]
If you want to compute the output of an expression using a
particular row of `self.equations_`, you may specify the index here.
For multiple output equations, you must pass a list of indices
in the same order.
Returns
-------
y_predicted : ndarray of shape (n_samples, nout_)
Values predicted by substituting `X` into the fitted symbolic
regression model.
Raises
------
ValueError
Raises if the `best_equation` cannot be evaluated.
"""
check_is_fitted(
self, attributes=["selection_mask_", "feature_names_in_", "nout_"]
)
best_equation = self.get_best(index=index)
# When X is an numpy array or a pandas dataframe with a RangeIndex,
# the self.feature_names_in_ generated during fit, for the same X,
# will cause a warning to be thrown during _validate_data.
# To avoid this, convert X to a dataframe, apply the selection mask,
# and then set the column/feature_names of X to be equal to those
# generated during fit.
if not isinstance(X, pd.DataFrame):
X = check_array(X)
X = pd.DataFrame(X)
if isinstance(X.columns, pd.RangeIndex):
if self.selection_mask_ is not None:
# RangeIndex enforces column order allowing columns to
# be correctly filtered with self.selection_mask_
X = X[X.columns[self.selection_mask_]]
X.columns = self.feature_names_in_
# Without feature information, CallableEquation/lambda_format equations
# require that the column order of X matches that of the X used during
# the fitting process. _validate_data removes this feature information
# when it converts the dataframe to an np array. Thus, to ensure feature
# order is preserved after conversion, the dataframe columns must be
# reordered/reindexed to match those of the transformed (denoised and
# feature selected) X in fit.
X = X.reindex(columns=self.feature_names_in_)
X = self._validate_data_X(X)
try:
if isinstance(best_equation, list):
assert self.nout_ > 1
return np.stack(
[eq["lambda_format"](X) for eq in best_equation], axis=1
)
else:
return best_equation["lambda_format"](X)
except Exception as error:
raise ValueError(
"Failed to evaluate the expression. "
"If you are using a custom operator, make sure to define it in `extra_sympy_mappings`, "
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1/x})`, where "
"`lambda x: 1/x` is a valid SymPy function defining the operator. "
"You can then run `model.refresh()` to re-load the expressions."
) from error
def sympy(self, index=None):
"""
Return sympy representation of the equation(s) chosen by `model_selection`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
Returns
-------
best_equation : str, list[str] of length nout_
SymPy representation of the best equation.
"""
self.refresh()
best_equation = self.get_best(index=index)
if isinstance(best_equation, list):
assert self.nout_ > 1
return [eq["sympy_format"] for eq in best_equation]
else:
return best_equation["sympy_format"]
def latex(self, index=None, precision=3):
"""
Return latex representation of the equation(s) chosen by `model_selection`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
precision : int
The number of significant figures shown in the LaTeX
representation.
Default is `3`.
Returns
-------
best_equation : str or list[str] of length nout_
LaTeX expression of the best equation.
"""
self.refresh()
sympy_representation = self.sympy(index=index)
if self.nout_ > 1:
output = []
for s in sympy_representation:
latex = sympy2latex(s, prec=precision)
output.append(latex)
return output
return sympy2latex(sympy_representation, prec=precision)
def jax(self, index=None):
"""
Return jax representation of the equation(s) chosen by `model_selection`.
Each equation (multiple given if there are multiple outputs) is a dictionary
containing {"callable": func, "parameters": params}. To call `func`, pass
func(X, params). This function is differentiable using `jax.grad`.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
Returns
-------
best_equation : dict[str, Any]
Dictionary of callable jax function in "callable" key,
and jax array of parameters as "parameters" key.
"""
self.set_params(output_jax_format=True)
self.refresh()
best_equation = self.get_best(index=index)
if isinstance(best_equation, list):
assert self.nout_ > 1
return [eq["jax_format"] for eq in best_equation]
else:
return best_equation["jax_format"]
def pytorch(self, index=None):
"""
Return pytorch representation of the equation(s) chosen by `model_selection`.
Each equation (multiple given if there are multiple outputs) is a PyTorch module
containing the parameters as trainable attributes. You can use the module like
any other PyTorch module: `module(X)`, where `X` is a tensor with the same
column ordering as trained with.
Parameters
----------
index : int | list[int]
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter. If there are multiple output
features, then pass a list of indices with the order the same
as the output feature.
Returns
-------
best_equation : torch.nn.Module
PyTorch module representing the expression.
"""
self.set_params(output_torch_format=True)
self.refresh()
best_equation = self.get_best(index=index)
if isinstance(best_equation, list):
return [eq["torch_format"] for eq in best_equation]
else:
return best_equation["torch_format"]
def _read_equation_file(self):
"""Read the hall of fame file created by `SymbolicRegression.jl`."""
try:
if self.nout_ > 1:
all_outputs = []
for i in range(1, self.nout_ + 1):
cur_filename = str(self.equation_file_) + f".out{i}" + ".bkup"
if not os.path.exists(cur_filename):
cur_filename = str(self.equation_file_) + f".out{i}"
with open(cur_filename, "r", encoding="utf-8") as f:
buf = f.read()
buf = _preprocess_julia_floats(buf)
df = self._postprocess_dataframe(pd.read_csv(StringIO(buf)))
all_outputs.append(df)
else:
filename = str(self.equation_file_) + ".bkup"
if not os.path.exists(filename):
filename = str(self.equation_file_)
with open(filename, "r", encoding="utf-8") as f:
buf = f.read()
buf = _preprocess_julia_floats(buf)
all_outputs = [self._postprocess_dataframe(pd.read_csv(StringIO(buf)))]
except FileNotFoundError:
raise RuntimeError(
"Couldn't find equation file! The equation search likely exited "
"before a single iteration completed."
)
return all_outputs
def _postprocess_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
df = df.rename(
columns={
"Complexity": "complexity",
"Loss": "loss",
"Equation": "equation",
},
)
return df
def get_hof(self):
"""Get the equations from a hall of fame file.
If no arguments entered, the ones used
previously from a call to PySR will be used.
"""
check_is_fitted(
self,
attributes=[
"nout_",
"equation_file_",
"selection_mask_",
"feature_names_in_",
],
)
if (
not hasattr(self, "equation_file_contents_")
) or self.equation_file_contents_ is None:
self.equation_file_contents_ = self._read_equation_file()
# It is expected extra_jax/torch_mappings will be updated after fit.
# Thus, validation is performed here instead of in _validate_init_params
extra_jax_mappings = self.extra_jax_mappings
extra_torch_mappings = self.extra_torch_mappings
if extra_jax_mappings is not None:
for value in extra_jax_mappings.values():
if not isinstance(value, str):
raise ValueError(
"extra_jax_mappings must have keys that are strings! "
"e.g., {sympy.sqrt: 'jnp.sqrt'}."
)
else:
extra_jax_mappings = {}
if extra_torch_mappings is not None:
for value in extra_torch_mappings.values():
if not callable(value):
raise ValueError(
"extra_torch_mappings must be callable functions! "
"e.g., {sympy.sqrt: torch.sqrt}."
)
else:
extra_torch_mappings = {}
ret_outputs = []
equation_file_contents = copy.deepcopy(self.equation_file_contents_)
for output in equation_file_contents:
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
jax_format = []
torch_format = []
for _, eqn_row in output.iterrows():
eqn = pysr2sympy(
eqn_row["equation"],
feature_names_in=self.feature_names_in_,
extra_sympy_mappings=self.extra_sympy_mappings,
)
sympy_format.append(eqn)
# NumPy:
sympy_symbols = create_sympy_symbols(self.feature_names_in_)
lambda_format.append(
sympy2numpy(
eqn,
sympy_symbols,
selection=self.selection_mask_,
)
)
# JAX:
if self.output_jax_format:
func, params = sympy2jax(
eqn,
sympy_symbols,
selection=self.selection_mask_,
extra_jax_mappings=self.extra_jax_mappings,
)
jax_format.append({"callable": func, "parameters": params})
# Torch:
if self.output_torch_format:
module = sympy2torch(
eqn,
sympy_symbols,
selection=self.selection_mask_,
extra_torch_mappings=self.extra_torch_mappings,
)
torch_format.append(module)
curMSE = eqn_row["loss"]
curComplexity = eqn_row["complexity"]
if lastMSE is None:
cur_score = 0.0
else:
if curMSE > 0.0:
# TODO Move this to more obvious function/file.
cur_score = -np.log(curMSE / lastMSE) / (
curComplexity - lastComplexity
)
else:
cur_score = np.inf
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output["score"] = np.array(scores)
output["sympy_format"] = sympy_format
output["lambda_format"] = lambda_format
output_cols = [
"complexity",
"loss",
"score",
"equation",
"sympy_format",
"lambda_format",
]
if self.output_jax_format:
output_cols += ["jax_format"]
output["jax_format"] = jax_format
if self.output_torch_format:
output_cols += ["torch_format"]
output["torch_format"] = torch_format
ret_outputs.append(output[output_cols])
if self.nout_ > 1:
return ret_outputs
return ret_outputs[0]
def latex_table(
self,
indices=None,
precision=3,
columns=["equation", "complexity", "loss", "score"],
):
"""Create a LaTeX/booktabs table for all, or some, of the equations.
Parameters
----------
indices : list[int] | list[list[int]]
If you wish to select a particular subset of equations from
`self.equations_`, give the row numbers here. By default,
all equations will be used. If there are multiple output
features, then pass a list of lists.
precision : int
The number of significant figures shown in the LaTeX
representations.
Default is `3`.
columns : list[str]
Which columns to include in the table.
Default is `["equation", "complexity", "loss", "score"]`.
Returns
-------
latex_table_str : str
A string that will render a table in LaTeX of the equations.
"""
self.refresh()
if isinstance(self.equations_, list):
if indices is not None:
assert isinstance(indices, list)
assert isinstance(indices[0], list)
assert len(indices) == self.nout_
table_string = sympy2multilatextable(
self.equations_, indices=indices, precision=precision, columns=columns
)
elif isinstance(self.equations_, pd.DataFrame):
if indices is not None:
assert isinstance(indices, list)
assert isinstance(indices[0], int)
table_string = sympy2latextable(
self.equations_, indices=indices, precision=precision, columns=columns
)
else:
raise ValueError(
"Invalid type for equations_ to pass to `latex_table`. "
"Expected a DataFrame or a list of DataFrames."
)
return with_preamble(table_string)
def idx_model_selection(equations: pd.DataFrame, model_selection: str):
"""Select an expression and return its index."""
if model_selection == "accuracy":
chosen_idx = equations["loss"].idxmin()
elif model_selection == "best":
threshold = 1.5 * equations["loss"].min()
filtered_equations = equations.query(f"loss <= {threshold}")
chosen_idx = filtered_equations["score"].idxmax()
elif model_selection == "score":
chosen_idx = equations["score"].idxmax()
else:
raise NotImplementedError(
f"{model_selection} is not a valid model selection strategy."
)
return chosen_idx
def _mutate_parameter(param_name: str, param_value):
if param_name in ["binary_operators", "unary_operators"] and isinstance(
param_value, str
):
return [param_value]
if param_name == "batch_size" and param_value < 1:
warnings.warn(
"Given `batch_size` must be greater than or equal to one. "
"`batch_size` has been increased to equal one."
)
return 1
if (
param_name == "progress"
and param_value == True
and "buffer" not in sys.stdout.__dir__()
):
warnings.warn(
"Note: it looks like you are running in Jupyter. "
"The progress bar will be turned off."
)
return False
return param_value