Spaces:
Running
Running
import os | |
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
from collections import namedtuple | |
import pathlib | |
import numpy as np | |
import pandas as pd | |
# Dumped from hyperparam optimization | |
default_alpha = 15.182913 | |
default_annealing = 1.000000 | |
default_fractionReplaced = 0.096909 | |
default_fractionReplacedHof = 0.116439 | |
default_ncyclesperiteration = 15280.000000 | |
default_niterations = 10.000000 | |
default_npop = 101.000000 | |
default_parsimony = 0.000505 | |
default_topn = 7.000000 | |
default_weightAddNode = 0.495629 | |
default_weightDeleteNode = 0.652559 | |
default_weightDoNothing = 0.094013 | |
default_weightMutateConstant = 3.817843 | |
default_weightMutateOperator = 0.686884 | |
default_weightRandomize = 0.055272 | |
default_weightSimplify = 0.003755 | |
default_result = 0.135055 | |
def eureqa(X=None, y=None, threads=4, | |
niterations=20, | |
ncyclesperiteration=int(default_ncyclesperiteration), | |
binary_operators=["plus", "mult"], | |
unary_operators=["cos", "exp", "sin"], | |
alpha=default_alpha, | |
annealing=True, | |
fractionReplaced=default_fractionReplaced, | |
fractionReplacedHof=default_fractionReplacedHof, | |
npop=int(default_npop), | |
parsimony=default_parsimony, | |
migration=True, | |
hofMigration=True, | |
shouldOptimizeConstants=True, | |
topn=int(default_topn), | |
weightAddNode=default_weightAddNode, | |
weightDeleteNode=default_weightDeleteNode, | |
weightDoNothing=default_weightDoNothing, | |
weightMutateConstant=default_weightMutateConstant, | |
weightMutateOperator=default_weightMutateOperator, | |
weightRandomize=default_weightRandomize, | |
weightSimplify=default_weightSimplify, | |
timeout=None, | |
equation_file='hall_of_fame.csv', | |
test='simple1', | |
maxsize=20, | |
): | |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i. | |
Note: most default parameters have been tuned over several example | |
equations, but you should adjust `threads`, `niterations`, | |
`binary_operators`, `unary_operators` to your requirements. | |
:param X: np.ndarray, 2D array. Rows are examples, columns are features. | |
:param y: np.ndarray, 1D array. Rows are examples. | |
:param threads: int, Number of threads (=number of populations running). | |
You can have more threads than cores - it actually makes it more | |
efficient. | |
:param niterations: int, Number of iterations of the algorithm to run. The best | |
equations are printed, and migrate between populations, at the | |
end of each. | |
:param ncyclesperiteration: int, Number of total mutations to run, per 10 | |
samples of the population, per iteration. | |
:param binary_operators: list, List of strings giving the binary operators | |
in Julia's Base, or in `operator.jl`. | |
:param unary_operators: list, Same but for operators taking a single `Float32`. | |
:param alpha: float, Initial temperature. | |
:param annealing: bool, Whether to use annealing. You should (and it is default). | |
:param fractionReplaced: float, How much of population to replace with migrating | |
equations from other populations. | |
:param fractionReplacedHof: float, How much of population to replace with migrating | |
equations from hall of fame. | |
:param npop: int, Number of individuals in each population | |
:param parsimony: float, Multiplicative factor for how much to punish complexity. | |
:param migration: bool, Whether to migrate. | |
:param hofMigration: bool, Whether to have the hall of fame migrate. | |
:param shouldOptimizeConstants: bool, Whether to numerically optimize | |
constants (Nelder-Mead/Newton) at the end of each iteration. | |
:param topn: int, How many top individuals migrate from each population. | |
:param weightAddNode: float, Relative likelihood for mutation to add a node | |
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node | |
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual | |
:param weightMutateConstant: float, Relative likelihood for mutation to change | |
the constant slightly in a random direction. | |
:param weightMutateOperator: float, Relative likelihood for mutation to swap | |
an operator. | |
:param weightRandomize: float, Relative likelihood for mutation to completely | |
delete and then randomly generate the equation | |
:param weightSimplify: float, Relative likelihood for mutation to simplify | |
constant parts by evaluation | |
:param timeout: float, Time in seconds to timeout search | |
:param equation_file: str, Where to save the files (.csv separated by |) | |
:param test: str, What test to run, if X,y not passed. | |
:param maxsize: int, Max size of an equation. | |
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations | |
(as strings). | |
""" | |
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}' | |
if isinstance(binary_operators, str): binary_operators = [binary_operators] | |
if isinstance(unary_operators, str): unary_operators = [unary_operators] | |
if X is None: | |
if test == 'simple1': | |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5" | |
elif test == 'simple2': | |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/np.abs(X[:, 0])" | |
elif test == 'simple3': | |
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)" | |
elif test == 'simple4': | |
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4" | |
elif test == 'simple5': | |
eval_str = "(np.exp(X[:, 3]) + 3)/(X[:, 1] + np.cos(X[:, 0]))" | |
X = np.random.randn(100, 5)*3 | |
y = eval(eval_str) | |
print("Running on", eval_str) | |
def_hyperparams = f"""include("operators.jl") | |
const binops = {'[' + ', '.join(binary_operators) + ']'} | |
const unaops = {'[' + ', '.join(unary_operators) + ']'} | |
const ns=10; | |
const parsimony = {parsimony:f}f0 | |
const alpha = {alpha:f}f0 | |
const maxsize = {maxsize:d} | |
const migration = {'true' if migration else 'false'} | |
const hofMigration = {'true' if hofMigration else 'false'} | |
const fractionReplacedHof = {fractionReplacedHof}f0 | |
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'} | |
const hofFile = "{equation_file}" | |
const nthreads = {threads:d} | |
const mutationWeights = [ | |
{weightMutateConstant:f}, | |
{weightMutateOperator:f}, | |
{weightAddNode:f}, | |
{weightDeleteNode:f}, | |
{weightSimplify:f}, | |
{weightRandomize:f}, | |
{weightDoNothing:f} | |
] | |
""" | |
assert len(X.shape) == 2 | |
assert len(y.shape) == 1 | |
X_str = str(X.tolist()).replace('],', '];').replace(',', '') | |
y_str = str(y.tolist()) | |
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})"""" | |
const y = convert(Array{Float32, 1}, """f"{y_str})"""" | |
""" | |
starting_path = f'cd {pathlib.Path().absolute()}' | |
code_path = f'cd {pathlib.Path(__file__).parent.absolute()}' #Move to filepath of code | |
os.system(code_path) | |
with open(f'.hyperparams_{rand_string}.jl', 'w') as f: | |
print(def_hyperparams, file=f) | |
with open(f'.dataset_{rand_string}.jl', 'w') as f: | |
print(def_datasets, file=f) | |
command = [ | |
'julia -O3', | |
f'--threads {threads}', | |
'-e', | |
f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, 1e9), topn={topn:d})\'', | |
] | |
if timeout is not None: | |
command = [f'timeout {timeout}'] + command | |
cur_cmd = ' '.join(command) | |
print("Running on", cur_cmd) | |
os.system(cur_cmd) | |
try: | |
output = pd.read_csv(equation_file, sep="|") | |
except FileNotFoundError: | |
print("Couldn't find equation file!") | |
output = pd.DataFrame() | |
os.system(starting_path) | |
return output | |
if __name__ == "__main__": | |
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--threads", type=int, default=4, help="Number of threads") | |
parser.add_argument("--parsimony", type=float, default=default_parsimony, help="How much to punish complexity") | |
parser.add_argument("--alpha", type=float, default=default_alpha, help="Scaling of temperature") | |
parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation") | |
parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods") | |
parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population") | |
parser.add_argument("--ncyclesperiteration", type=int, default=int(default_ncyclesperiteration), help="Number of evolutionary cycles per migration") | |
parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population") | |
parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame") | |
parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations") | |
parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate") | |
parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration") | |
parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)") | |
parser.add_argument("--annealing", type=bool, default=True, help="Whether to use simulated annealing") | |
parser.add_argument("--equation_file", type=str, default='hall_of_fame.csv', help="File to dump best equations to") | |
parser.add_argument("--test", type=str, default='simple1', help="Which test to run") | |
parser.add_argument( | |
"--binary-operators", type=str, nargs="+", default=["plus", "mult"], | |
help="Binary operators. Make sure they are defined in operators.jl") | |
parser.add_argument( | |
"--unary-operators", type=str, nargs="+", default=["exp", "sin", "cos"], | |
help="Unary operators. Make sure they are defined in operators.jl") | |
args = vars(parser.parse_args()) #dict | |
eureqa(**args) | |