PySR / pysr /sr.py
MilesCranmer's picture
Fix bug with 1 feature; fixes #3
da5e3e7
raw
history blame
8.31 kB
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
def pysr(X=None, y=None, weights=None, threads=4,
niterations=100,
ncyclesperiteration=300,
binary_operators=["plus", "mult"],
unary_operators=["cos", "exp", "sin"],
alpha=0.1,
annealing=True,
fractionReplaced=0.10,
fractionReplacedHof=0.10,
npop=1000,
parsimony=1e-4,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=10,
weightAddNode=1,
weightInsertNode=3,
weightDeleteNode=3,
weightDoNothing=1,
weightMutateConstant=10,
weightMutateOperator=1,
weightRandomize=1,
weightSimplify=0.01,
perturbationFactor=1.0,
nrestarts=3,
timeout=None,
equation_file='hall_of_fame.csv',
test='simple1',
verbosity=1e9,
maxsize=20,
):
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
Note: most default parameters have been tuned over several example
equations, but you should adjust `threads`, `niterations`,
`binary_operators`, `unary_operators` to your requirements.
:param X: np.ndarray, 2D array. Rows are examples, columns are features.
:param y: np.ndarray, 1D array. Rows are examples.
:param threads: int, Number of threads (=number of populations running).
You can have more threads than cores - it actually makes it more
efficient.
:param niterations: int, Number of iterations of the algorithm to run. The best
equations are printed, and migrate between populations, at the
end of each.
:param ncyclesperiteration: int, Number of total mutations to run, per 10
samples of the population, per iteration.
:param binary_operators: list, List of strings giving the binary operators
in Julia's Base, or in `operator.jl`.
:param unary_operators: list, Same but for operators taking a single `Float32`.
:param alpha: float, Initial temperature.
:param annealing: bool, Whether to use annealing. You should (and it is default).
:param fractionReplaced: float, How much of population to replace with migrating
equations from other populations.
:param fractionReplacedHof: float, How much of population to replace with migrating
equations from hall of fame.
:param npop: int, Number of individuals in each population
:param parsimony: float, Multiplicative factor for how much to punish complexity.
:param migration: bool, Whether to migrate.
:param hofMigration: bool, Whether to have the hall of fame migrate.
:param shouldOptimizeConstants: bool, Whether to numerically optimize
constants (Nelder-Mead/Newton) at the end of each iteration.
:param topn: int, How many top individuals migrate from each population.
:param nrestarts: int, Number of times to restart the constant optimizer
:param perturbationFactor: float, Constants are perturbed by a max
factor of (perturbationFactor*T + 1). Either multiplied by this
or divided by this.
:param weightAddNode: float, Relative likelihood for mutation to add a node
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
:param weightMutateConstant: float, Relative likelihood for mutation to change
the constant slightly in a random direction.
:param weightMutateOperator: float, Relative likelihood for mutation to swap
an operator.
:param weightRandomize: float, Relative likelihood for mutation to completely
delete and then randomly generate the equation
:param weightSimplify: float, Relative likelihood for mutation to simplify
constant parts by evaluation
:param timeout: float, Time in seconds to timeout search
:param equation_file: str, Where to save the files (.csv separated by |)
:param test: str, What test to run, if X,y not passed.
:param maxsize: int, Max size of an equation.
:returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations
(as strings).
"""
rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}'
if isinstance(binary_operators, str): binary_operators = [binary_operators]
if isinstance(unary_operators, str): unary_operators = [unary_operators]
if X is None:
if test == 'simple1':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
elif test == 'simple2':
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
elif test == 'simple3':
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
elif test == 'simple4':
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
elif test == 'simple5':
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"
X = np.random.randn(100, 5)*3
y = eval(eval_str)
print("Running on", eval_str)
pkg_directory = '/'.join(__file__.split('/')[:-2] + ['julia'])
def_hyperparams = f"""include("{pkg_directory}/operators.jl")
const binops = {'[' + ', '.join(binary_operators) + ']'}
const unaops = {'[' + ', '.join(unary_operators) + ']'}
const ns=10;
const parsimony = {parsimony:f}f0
const alpha = {alpha:f}f0
const maxsize = {maxsize:d}
const migration = {'true' if migration else 'false'}
const hofMigration = {'true' if hofMigration else 'false'}
const fractionReplacedHof = {fractionReplacedHof}f0
const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'}
const hofFile = "{equation_file}"
const nthreads = {threads:d}
const nrestarts = {nrestarts:d}
const perturbationFactor = {perturbationFactor:f}f0
const annealing = {"true" if annealing else "false"}
const weighted = {"true" if weights is not None else "false"}
const mutationWeights = [
{weightMutateConstant:f},
{weightMutateOperator:f},
{weightAddNode:f},
{weightInsertNode:f},
{weightDeleteNode:f},
{weightSimplify:f},
{weightRandomize:f},
{weightDoNothing:f}
]
"""
assert len(X.shape) == 2
assert len(y.shape) == 1
assert X.shape[0] == y.shape[0]
if weights is not None:
assert len(weights.shape) == 1
assert X.shape[0] == weights.shape[0]
if X.shape[1] == 1:
X_str = 'transpose([' + str(X.tolist()).replace(']', '').replace(',', '').replace('[', '') + '])'
else:
X_str = str(X.tolist()).replace('],', '];').replace(',', '')
y_str = str(y.tolist())
def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})""""
const y = convert(Array{Float32, 1}, """f"{y_str})"
if weights is not None:
weight_str = str(weights.tolist())
def_datasets += """
const weights = convert(Array{Float32, 1}, """f"{weight_str})"
with open(f'/tmp/.hyperparams_{rand_string}.jl', 'w') as f:
print(def_hyperparams, file=f)
with open(f'/tmp/.dataset_{rand_string}.jl', 'w') as f:
print(def_datasets, file=f)
command = [
'julia -O3',
'--threads auto',
'-e',
f'\'include("/tmp/.hyperparams_{rand_string}.jl"); include("/tmp/.dataset_{rand_string}.jl"); include("{pkg_directory}/sr.jl"); fullRun({niterations:d}, npop={npop:d}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})\'',
]
if timeout is not None:
command = [f'timeout {timeout}'] + command
cur_cmd = ' '.join(command)
print("Running on", cur_cmd)
os.system(cur_cmd)
try:
output = pd.read_csv(equation_file, sep="|")
except FileNotFoundError:
print("Couldn't find equation file!")
output = pd.DataFrame()
return output