Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import pysr | |
import tempfile | |
from typing import Optional | |
empty_df = pd.DataFrame( | |
{ | |
"equation": [], | |
"loss": [], | |
"complexity": [], | |
} | |
) | |
test_equations = [ | |
"sin(x) + cos(2*x) + tan(x/3)", | |
] | |
def generate_data(s: str, num_points: int, noise_level: float): | |
x = np.linspace(0, 10, num_points) | |
for (k, v) in { | |
"sin": "np.sin", | |
"cos": "np.cos", | |
"exp": "np.exp", | |
"log": "np.log", | |
"tan": "np.tan", | |
"^": "**", | |
}.items(): | |
s = s.replace(k, v) | |
y = eval(s) | |
noise = np.random.normal(0, noise_level, y.shape) | |
y_noisy = y + noise | |
return pd.DataFrame({"x": x}), y_noisy | |
def greet( | |
file_obj: Optional[tempfile._TemporaryFileWrapper], | |
test_equation: str, | |
num_points: int, | |
noise_level: float, | |
niterations: int, | |
maxsize: int, | |
binary_operators: list, | |
unary_operators: list, | |
force_run: bool, | |
): | |
if file_obj is not None: | |
if len(binary_operators) == 0 and len(unary_operators) == 0: | |
return ( | |
empty_df, | |
"Please select at least one operator!", | |
) | |
# Look at some statistics of the file: | |
df = pd.read_csv(file_obj) | |
if len(df) == 0: | |
return ( | |
empty_df, | |
"The file is empty!", | |
) | |
if len(df.columns) == 1: | |
return ( | |
empty_df, | |
"The file has only one column!", | |
) | |
if len(df) > 10_000 and not force_run: | |
return ( | |
empty_df, | |
"You have uploaded a file with more than 10,000 rows. " | |
"This will take very long to run. " | |
"Please upload a subsample of the data, " | |
"or check the box 'Ignore Warnings'.", | |
) | |
col_to_fit = df.columns[-1] | |
y = np.array(df[col_to_fit]) | |
X = df.drop([col_to_fit], axis=1) | |
else: | |
X, y = generate_data(test_equation, num_points, noise_level) | |
model = pysr.PySRRegressor( | |
bumper=True, | |
maxsize=maxsize, | |
niterations=niterations, | |
binary_operators=binary_operators, | |
unary_operators=unary_operators, | |
timeout_in_seconds=1000, | |
) | |
model.fit(X, y) | |
df = model.equations_[["equation", "loss", "complexity"]] | |
# Convert all columns to string type: | |
df = df.astype(str) | |
msg = ( | |
"Success!\n" | |
f"You may run the model locally (faster) with " | |
f"the following parameters:" | |
+ f""" | |
model = PySRRegressor( | |
niterations={niterations}, | |
binary_operators={str(binary_operators)}, | |
unary_operators={str(unary_operators)}, | |
maxsize={maxsize}, | |
) | |
model.fit(X, y)""" | |
) | |
df.to_csv("pysr_output.csv", index=False) | |
return df, msg | |
def main(): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Tab("Example Data"): | |
# Plot of the example data: | |
example_plot = gr.ScatterPlot( | |
x="x", | |
y="y", | |
tooltip=["x", "y"], | |
x_lim=[0, 10], | |
y_lim=[-5, 5], | |
width=350, | |
height=300, | |
) | |
test_equation = gr.Radio( | |
test_equations, | |
value=test_equations[0], | |
label="Test Equation" | |
) | |
num_points = gr.Slider( | |
minimum=10, | |
maximum=1000, | |
value=100, | |
label="Number of Data Points", | |
step=1, | |
) | |
noise_level = gr.Slider( | |
minimum=0, maximum=1, value=0.1, label="Noise Level" | |
) | |
with gr.Tab("Upload Data"): | |
file_input = gr.File(label="Upload a CSV File") | |
gr.Markdown("Upload a CSV file with the data to fit. The last column will be used as the target variable.") | |
with gr.Row(): | |
binary_operators = gr.CheckboxGroup( | |
choices=["+", "-", "*", "/", "^"], | |
label="Binary Operators", | |
value=["+", "-", "*", "/"], | |
) | |
unary_operators = gr.CheckboxGroup( | |
choices=[ | |
"sin", | |
"cos", | |
"exp", | |
"log", | |
"square", | |
"cube", | |
"sqrt", | |
"abs", | |
"tan", | |
], | |
label="Unary Operators", | |
value=[], | |
) | |
niterations = gr.Slider( | |
minimum=1, | |
maximum=1000, | |
value=40, | |
label="Number of Iterations", | |
step=1, | |
) | |
maxsize = gr.Slider( | |
minimum=7, | |
maximum=35, | |
value=20, | |
label="Maximum Complexity", | |
step=1, | |
) | |
force_run = gr.Checkbox( | |
value=False, | |
label="Ignore Warnings", | |
) | |
with gr.Column(): | |
with gr.Row(): | |
df = gr.Dataframe( | |
headers=["Equation", "Loss", "Complexity"], | |
datatype=["str", "number", "number"], | |
) | |
error_log = gr.Textbox(label="Error Log") | |
with gr.Row(): | |
run_button = gr.Button() | |
run_button.click( | |
greet, | |
inputs=[ | |
file_input, | |
test_equation, | |
num_points, | |
noise_level, | |
niterations, | |
maxsize, | |
binary_operators, | |
unary_operators, | |
force_run, | |
], | |
outputs=[df, error_log], | |
) | |
# Any update to the equation choice will trigger a replot: | |
for eqn_component in [test_equation, num_points, noise_level]: | |
eqn_component.change(replot, [test_equation, num_points, noise_level], example_plot) | |
demo.launch() | |
def replot(test_equation, num_points, noise_level): | |
X, y = generate_data(test_equation, num_points, noise_level) | |
df = pd.DataFrame({"x": X["x"], "y": y}) | |
return df | |
if __name__ == "__main__": | |
main() | |