PySR / gui /app.py
MilesCranmer's picture
Instructions in upload tab
e1cf25c unverified
raw
history blame
7.13 kB
import gradio as gr
import numpy as np
import pandas as pd
import pysr
import tempfile
from typing import Optional
empty_df = pd.DataFrame(
{
"equation": [],
"loss": [],
"complexity": [],
}
)
test_equations = [
"sin(x) + cos(2*x) + tan(x/3)",
]
def generate_data(s: str, num_points: int, noise_level: float):
x = np.linspace(0, 10, num_points)
for (k, v) in {
"sin": "np.sin",
"cos": "np.cos",
"exp": "np.exp",
"log": "np.log",
"tan": "np.tan",
"^": "**",
}.items():
s = s.replace(k, v)
y = eval(s)
noise = np.random.normal(0, noise_level, y.shape)
y_noisy = y + noise
return pd.DataFrame({"x": x}), y_noisy
def greet(
file_obj: Optional[tempfile._TemporaryFileWrapper],
test_equation: str,
num_points: int,
noise_level: float,
niterations: int,
maxsize: int,
binary_operators: list,
unary_operators: list,
force_run: bool,
):
if file_obj is not None:
if len(binary_operators) == 0 and len(unary_operators) == 0:
return (
empty_df,
"Please select at least one operator!",
)
# Look at some statistics of the file:
df = pd.read_csv(file_obj)
if len(df) == 0:
return (
empty_df,
"The file is empty!",
)
if len(df.columns) == 1:
return (
empty_df,
"The file has only one column!",
)
if len(df) > 10_000 and not force_run:
return (
empty_df,
"You have uploaded a file with more than 10,000 rows. "
"This will take very long to run. "
"Please upload a subsample of the data, "
"or check the box 'Ignore Warnings'.",
)
col_to_fit = df.columns[-1]
y = np.array(df[col_to_fit])
X = df.drop([col_to_fit], axis=1)
else:
X, y = generate_data(test_equation, num_points, noise_level)
model = pysr.PySRRegressor(
bumper=True,
maxsize=maxsize,
niterations=niterations,
binary_operators=binary_operators,
unary_operators=unary_operators,
timeout_in_seconds=1000,
)
model.fit(X, y)
df = model.equations_[["equation", "loss", "complexity"]]
# Convert all columns to string type:
df = df.astype(str)
msg = (
"Success!\n"
f"You may run the model locally (faster) with "
f"the following parameters:"
+ f"""
model = PySRRegressor(
niterations={niterations},
binary_operators={str(binary_operators)},
unary_operators={str(unary_operators)},
maxsize={maxsize},
)
model.fit(X, y)"""
)
df.to_csv("pysr_output.csv", index=False)
return df, msg
def main():
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Tab("Example Data"):
# Plot of the example data:
example_plot = gr.ScatterPlot(
x="x",
y="y",
tooltip=["x", "y"],
x_lim=[0, 10],
y_lim=[-5, 5],
width=350,
height=300,
)
test_equation = gr.Radio(
test_equations,
value=test_equations[0],
label="Test Equation"
)
num_points = gr.Slider(
minimum=10,
maximum=1000,
value=100,
label="Number of Data Points",
step=1,
)
noise_level = gr.Slider(
minimum=0, maximum=1, value=0.1, label="Noise Level"
)
with gr.Tab("Upload Data"):
file_input = gr.File(label="Upload a CSV File")
gr.Markdown("Upload a CSV file with the data to fit. The last column will be used as the target variable.")
with gr.Row():
binary_operators = gr.CheckboxGroup(
choices=["+", "-", "*", "/", "^"],
label="Binary Operators",
value=["+", "-", "*", "/"],
)
unary_operators = gr.CheckboxGroup(
choices=[
"sin",
"cos",
"exp",
"log",
"square",
"cube",
"sqrt",
"abs",
"tan",
],
label="Unary Operators",
value=[],
)
niterations = gr.Slider(
minimum=1,
maximum=1000,
value=40,
label="Number of Iterations",
step=1,
)
maxsize = gr.Slider(
minimum=7,
maximum=35,
value=20,
label="Maximum Complexity",
step=1,
)
force_run = gr.Checkbox(
value=False,
label="Ignore Warnings",
)
with gr.Column():
with gr.Row():
df = gr.Dataframe(
headers=["Equation", "Loss", "Complexity"],
datatype=["str", "number", "number"],
)
error_log = gr.Textbox(label="Error Log")
with gr.Row():
run_button = gr.Button()
run_button.click(
greet,
inputs=[
file_input,
test_equation,
num_points,
noise_level,
niterations,
maxsize,
binary_operators,
unary_operators,
force_run,
],
outputs=[df, error_log],
)
# Any update to the equation choice will trigger a replot:
for eqn_component in [test_equation, num_points, noise_level]:
eqn_component.change(replot, [test_equation, num_points, noise_level], example_plot)
demo.launch()
def replot(test_equation, num_points, noise_level):
X, y = generate_data(test_equation, num_points, noise_level)
df = pd.DataFrame({"x": X["x"], "y": y})
return df
if __name__ == "__main__":
main()