PySR / test /test.py
MilesCranmer's picture
Add test for yes/no function
eae8f9c
raw
history blame
5.14 kB
import unittest
from unittest.mock import patch
import numpy as np
from pysr import pysr, get_hof, best, best_tex, best_callable, best_row
from pysr.sr import run_feature_selection, _handle_feature_selection, _yesno
import sympy
from sympy import lambdify
import pandas as pd
class TestPipeline(unittest.TestCase):
def setUp(self):
self.default_test_kwargs = dict(
niterations=10,
populations=4,
user_input=False,
annealing=True,
useFrequency=False,
)
np.random.seed(0)
self.X = np.random.randn(100, 5)
def test_linear_relation(self):
y = self.X[:, 0]
equations = pysr(self.X, y, **self.default_test_kwargs)
print(equations)
self.assertLessEqual(equations.iloc[-1]["MSE"], 1e-4)
def test_multioutput_custom_operator(self):
y = self.X[:, [0, 1]] ** 2
equations = pysr(
self.X,
y,
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x ** 2},
**self.default_test_kwargs,
procs=0,
)
print(equations)
self.assertLessEqual(equations[0].iloc[-1]["MSE"], 1e-4)
self.assertLessEqual(equations[1].iloc[-1]["MSE"], 1e-4)
def test_multioutput_weighted_with_callable(self):
y = self.X[:, [0, 1]] ** 2
w = np.random.rand(*y.shape)
w[w < 0.5] = 0.0
w[w >= 0.5] = 1.0
# Double equation when weights are 0:
y += (1 - w) * y
# Thus, pysr needs to use the weights to find the right equation!
equations = pysr(
self.X,
y,
weights=w,
unary_operators=["sq(x) = x^2"],
binary_operators=["plus"],
extra_sympy_mappings={"sq": lambda x: x ** 2},
**self.default_test_kwargs,
procs=0,
)
np.testing.assert_almost_equal(
best_callable()[0](self.X), self.X[:, 0] ** 2, decimal=4
)
np.testing.assert_almost_equal(
best_callable()[1](self.X), self.X[:, 1] ** 2, decimal=4
)
def test_empty_operators_single_input(self):
X = np.random.randn(100, 1)
y = X[:, 0] + 3.0
equations = pysr(
X,
y,
unary_operators=[],
binary_operators=["plus"],
**self.default_test_kwargs,
)
self.assertLessEqual(equations.iloc[-1]["MSE"], 1e-4)
class TestBest(unittest.TestCase):
def setUp(self):
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
self.equations = get_hof(
"equation_file.csv",
n_features=2,
variables_names="x0 x1".split(" "),
extra_sympy_mappings={},
output_jax_format=False,
multioutput=False,
nout=1,
)
def test_best(self):
self.assertEqual(best(self.equations), sympy.cos(sympy.Symbol("x0")) ** 2)
self.assertEqual(best(), sympy.cos(sympy.Symbol("x0")) ** 2)
def test_best_tex(self):
self.assertEqual(best_tex(self.equations), "\\cos^{2}{\\left(x_{0} \\right)}")
self.assertEqual(best_tex(), "\\cos^{2}{\\left(x_{0} \\right)}")
def test_best_lambda(self):
X = np.random.randn(10, 2)
y = np.cos(X[:, 0]) ** 2
for f in [best_callable(), best_callable(self.equations)]:
np.testing.assert_almost_equal(f(X), y, decimal=4)
class TestFeatureSelection(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_feature_selection(self):
X = np.random.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
selected = run_feature_selection(X, y, select_k_features=2)
self.assertEqual(sorted(selected), [2, 3])
def test_feature_selection_handler(self):
X = np.random.randn(20000, 5)
y = X[:, 2] ** 2 + X[:, 3] ** 2
var_names = [f"x{i}" for i in range(5)]
selected_X, selected_var_names, selection = _handle_feature_selection(
X,
select_k_features=2,
use_custom_variable_names=True,
variable_names=[f"x{i}" for i in range(5)],
y=y,
)
self.assertTrue((2 in selection) and (3 in selection))
self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
np.testing.assert_array_equal(
np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
)
class TestHelperFunctions(unittest.TestCase):
@patch('builtins.input', side_effect=['y', 'n'])
def test_yesno(self, mock_input):
# Assert that the yes/no function correctly deals with y/n
self.assertEqual(_yesno("Test"), True)
self.assertEqual(_yesno("Test"), False)