Spaces:
Running
Running
import numpy as np | |
import csv | |
import traceback | |
from .sr import pysr, best | |
from pathlib import Path | |
from functools import partial | |
PKG_DIR = Path(__file__).parents[1] | |
FEYNMAN_DATASET = PKG_DIR / "datasets" / "FeynmanEquations.csv" | |
class Problem: | |
""" | |
Problem API to work with PySR. | |
Has attributes: X, y as pysr accepts, form which is a string representing the correct equation and variable_names | |
Should be able to call pysr(problem.X, problem.y, var_names=problem.var_names) and have it work | |
""" | |
def __init__(self, X, y, form=None, variable_names=None): | |
self.X = X | |
self.y = y | |
self.form = form | |
self.variable_names = variable_names | |
class FeynmanProblem(Problem): | |
""" | |
Stores the data for the problems from the 100 Feynman Equations on Physics. | |
This is the benchmark used in the AI Feynman Paper | |
""" | |
def __init__(self, row, gen=False, dp=500): | |
""" | |
row: a row read as a dict from the FeynmanEquations dataset provided in the datasets folder of the repo | |
gen: If true the problem will have dp X and y values randomly generated else they will be None | |
""" | |
self.eq_id = row["Filename"] | |
self.n_vars = int(row["# variables"]) | |
super(FeynmanProblem, self).__init__( | |
None, | |
None, | |
form=row["Formula"], | |
variable_names=[row[f"v{i + 1}_name"] for i in range(self.n_vars)], | |
) | |
self.low = [float(row[f"v{i+1}_low"]) for i in range(self.n_vars)] | |
self.high = [float(row[f"v{i+1}_high"]) for i in range(self.n_vars)] | |
self.dp = dp | |
if gen: | |
self.X = np.random.uniform(0.01, 25, size=(self.dp, self.n_vars)) | |
d = {} | |
for var in range(len(self.variable_names)): | |
d[self.variable_names[var]] = self.X[:, var] | |
d["exp"] = np.exp | |
d["sqrt"] = np.sqrt | |
d["pi"] = np.pi | |
d["cos"] = np.cos | |
d["sin"] = np.sin | |
d["tan"] = np.tan | |
d["tanh"] = np.tanh | |
d["ln"] = np.log | |
d["log"] = np.log # Quite sure the Feynman dataset has no base 10 logs | |
d["arcsin"] = np.arcsin | |
self.y = eval(self.form, d) | |
def __str__(self): | |
return f"Feynman Equation: {self.eq_id}|Form: {self.form}" | |
def __repr__(self): | |
return str(self) | |
def mk_problems(self, first=100, gen=False, dp=500, data_dir=FEYNMAN_DATASET): | |
""" | |
first: the first "first" equations from the dataset will be made into problems | |
data_dir: the path pointing to the Feynman Equations csv | |
returns: list of FeynmanProblems | |
""" | |
ret = [] | |
with open(data_dir) as csvfile: | |
ind = 0 | |
reader = csv.DictReader(csvfile) | |
for i, row in enumerate(reader): | |
if ind > first: | |
break | |
if row["Filename"] == "": | |
continue | |
try: | |
p = FeynmanProblem(row, gen=gen, dp=dp) | |
ret.append(p) | |
except Exception as e: | |
traceback.print_exc() | |
print(f"FAILED ON ROW {i} with {e}") | |
ind += 1 | |
return ret | |
def run_on_problem(problem, verbosity=0, multiprocessing=True): | |
""" | |
Takes in a problem and returns a tuple: (equations, best predicted equation, actual equation) | |
""" | |
from time import time | |
starting = time() | |
equations = pysr( | |
problem.X, | |
problem.y, | |
variable_names=problem.variable_names, | |
verbosity=verbosity, | |
) | |
timing = time() - starting | |
others = {"time": timing, "problem": problem} | |
if not multiprocessing: | |
others["equations"] = equations | |
return str(best(equations)), problem.form, others | |
def do_feynman_experiments_parallel( | |
first=100, | |
verbosity=0, | |
dp=500, | |
output_file_path="FeynmanExperiment.csv", | |
data_dir=FEYNMAN_DATASET, | |
): | |
import multiprocessing as mp | |
from tqdm import tqdm | |
problems = FeynmanProblem.mk_problems( | |
first=first, gen=True, dp=dp, data_dir=data_dir | |
) | |
ids = [] | |
predictions = [] | |
true_equations = [] | |
time_takens = [] | |
pool = mp.Pool() | |
results = [] | |
with tqdm(total=len(problems)) as pbar: | |
f = partial(run_on_problem, verbosity=verbosity) | |
for i, res in enumerate(pool.imap(f, problems)): | |
results.append(res) | |
pbar.update() | |
for res in results: | |
prediction, true_equation, others = res | |
problem = others["problem"] | |
ids.append(problem.eq_id) | |
predictions.append(prediction) | |
true_equations.append(true_equation) | |
time_takens.append(others["time"]) | |
with open(output_file_path, "a") as f: | |
writer = csv.writer(f, delimiter=",") | |
writer.writerow(["ID", "Predicted", "True", "Time"]) | |
for i in range(len(ids)): | |
writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]]) | |
def do_feynman_experiments( | |
first=100, | |
verbosity=0, | |
dp=500, | |
output_file_path="FeynmanExperiment.csv", | |
data_dir=FEYNMAN_DATASET, | |
): | |
from tqdm import tqdm | |
problems = FeynmanProblem.mk_problems( | |
first=first, gen=True, dp=dp, data_dir=data_dir | |
) | |
ids = [] | |
predictions = [] | |
true_equations = [] | |
time_takens = [] | |
for problem in tqdm(problems): | |
prediction, true_equation, others = run_on_problem(problem, verbosity) | |
ids.append(problem.eq_id) | |
predictions.append(prediction) | |
true_equations.append(true_equation) | |
time_takens.append(others["time"]) | |
with open(output_file_path, "a") as f: | |
writer = csv.writer(f, delimiter=",") | |
writer.writerow(["ID", "Predicted", "True", "Time"]) | |
for i in range(len(ids)): | |
writer.writerow([ids[i], predictions[i], true_equations[i], time_takens[i]]) | |