Spaces:
Running
Running
from collections import OrderedDict | |
import gradio as gr | |
import numpy as np | |
from data import TEST_EQUATIONS | |
from gradio.components.base import Component | |
from plots import plot_example_data, plot_pareto_curve | |
from processing import processing, stop | |
class ExampleData: | |
def __init__(self, demo: gr.Blocks) -> None: | |
with gr.Column(scale=1): | |
self.example_plot = gr.Plot() | |
with gr.Column(scale=1): | |
self.test_equation = gr.Radio( | |
TEST_EQUATIONS, value=TEST_EQUATIONS[0], label="Test Equation" | |
) | |
self.num_points = gr.Slider( | |
minimum=10, | |
maximum=1000, | |
value=200, | |
label="Number of Data Points", | |
step=1, | |
) | |
self.noise_level = gr.Slider( | |
minimum=0, maximum=1, value=0.05, label="Noise Level" | |
) | |
self.data_seed = gr.Number(value=0, label="Random Seed") | |
# Set up plotting: | |
eqn_components = [ | |
self.test_equation, | |
self.num_points, | |
self.noise_level, | |
self.data_seed, | |
] | |
for eqn_component in eqn_components: | |
eqn_component.change( | |
plot_example_data, | |
eqn_components, | |
self.example_plot, | |
show_progress=False, | |
) | |
demo.load(plot_example_data, eqn_components, self.example_plot) | |
class UploadData: | |
def __init__(self) -> None: | |
self.file_input = gr.File(label="Upload a CSV File") | |
self.label = gr.Markdown( | |
"The rightmost column of your CSV file will be used as the target variable." | |
) | |
class Data: | |
def __init__(self, demo: gr.Blocks) -> None: | |
with gr.Tab("Example Data"): | |
self.example_data = ExampleData(demo) | |
with gr.Tab("Upload Data"): | |
self.upload_data = UploadData() | |
class BasicSettings: | |
def __init__(self) -> None: | |
self.binary_operators = gr.CheckboxGroup( | |
choices=["+", "-", "*", "/", "^", "max", "min", "mod", "cond"], | |
label="Binary Operators", | |
value=["+", "-", "*", "/"], | |
) | |
self.unary_operators = gr.CheckboxGroup( | |
choices=[ | |
"sin", | |
"cos", | |
"tan", | |
"exp", | |
"log", | |
"square", | |
"cube", | |
"sqrt", | |
"abs", | |
"erf", | |
"relu", | |
"round", | |
"sign", | |
], | |
label="Unary Operators", | |
value=["sin"], | |
) | |
self.niterations = gr.Slider( | |
minimum=1, | |
maximum=1000, | |
value=40, | |
label="Number of Iterations", | |
step=1, | |
) | |
self.maxsize = gr.Slider( | |
minimum=7, | |
maximum=100, | |
value=20, | |
label="Maximum Complexity", | |
step=1, | |
) | |
self.parsimony = gr.Number( | |
value=0.0032, | |
label="Parsimony Coefficient", | |
) | |
class AdvancedSettings: | |
def __init__(self) -> None: | |
self.populations = gr.Slider( | |
minimum=2, | |
maximum=100, | |
value=15, | |
label="Number of Populations", | |
step=1, | |
) | |
self.population_size = gr.Slider( | |
minimum=2, | |
maximum=1000, | |
value=33, | |
label="Population Size", | |
step=1, | |
) | |
self.ncycles_per_iteration = gr.Number( | |
value=550, | |
label="Cycles per Iteration", | |
) | |
self.elementwise_loss = gr.Radio( | |
["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"], | |
value="L2DistLoss()", | |
label="Loss Function", | |
) | |
self.adaptive_parsimony_scaling = gr.Number( | |
value=20.0, | |
label="Adaptive Parsimony Scaling", | |
) | |
self.optimizer_algorithm = gr.Radio( | |
["BFGS", "NelderMead"], | |
value="BFGS", | |
label="Optimizer Algorithm", | |
) | |
self.optimizer_iterations = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=8, | |
label="Optimizer Iterations", | |
step=1, | |
) | |
self.batching = gr.Checkbox( | |
value=False, | |
label="Batching", | |
) | |
self.batch_size = gr.Slider( | |
minimum=2, | |
maximum=1000, | |
value=50, | |
label="Batch Size", | |
step=1, | |
) | |
class GradioSettings: | |
def __init__(self) -> None: | |
self.plot_update_delay = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=3, | |
label="Plot Update Delay", | |
) | |
self.force_run = gr.Checkbox( | |
value=False, | |
label="Ignore Warnings", | |
) | |
class Settings: | |
def __init__(self): | |
with gr.Tab("Basic Settings"): | |
self.basic_settings = BasicSettings() | |
with gr.Tab("Advanced Settings"): | |
self.advanced_settings = AdvancedSettings() | |
with gr.Tab("Gradio Settings"): | |
self.gradio_settings = GradioSettings() | |
class Results: | |
def __init__(self): | |
with gr.Tab("Pareto Front"): | |
self.pareto = gr.Plot() | |
with gr.Tab("Predictions"): | |
self.predictions_plot = gr.Plot() | |
self.df = gr.Dataframe( | |
headers=["complexity", "loss", "equation"], | |
datatype=["number", "number", "str"], | |
wrap=True, | |
column_widths=[75, 75, 200], | |
interactive=False, | |
) | |
self.messages = gr.Textbox(label="Messages", value="", interactive=False) | |
def flatten_attributes( | |
component_group, absolute_name: str, d: OrderedDict | |
) -> OrderedDict: | |
if not hasattr(component_group, "__dict__"): | |
return d | |
for name, elem in component_group.__dict__.items(): | |
new_absolute_name = absolute_name + "." + name | |
if name.startswith("_"): | |
# Private attribute | |
continue | |
elif elem in d.values(): | |
# Don't duplicate any tiems | |
continue | |
elif isinstance(elem, Component): | |
# Only add components to dict | |
d[new_absolute_name] = elem | |
else: | |
flatten_attributes(elem, new_absolute_name, d) | |
return d | |
class AppInterface: | |
def __init__(self, demo: gr.Blocks) -> None: | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(): | |
self.data = Data(demo) | |
with gr.Row(): | |
self.settings = Settings() | |
with gr.Column(scale=2): | |
self.results = Results() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
self.stop = gr.Button(value="Stop") | |
with gr.Column(scale=1, min_width=200): | |
self.run = gr.Button() | |
# Update plot when dataframe is updated: | |
self.results.df.change( | |
plot_pareto_curve, | |
inputs=[self.results.df, self.settings.basic_settings.maxsize], | |
outputs=[self.results.pareto], | |
show_progress=False, | |
) | |
ignore = ["df", "predictions_plot", "pareto", "messages"] | |
self.run.click( | |
create_processing_function(self, ignore=ignore), | |
inputs=[ | |
v | |
for k, v in flatten_attributes(self, "interface", OrderedDict()).items() | |
if last_part(k) not in ignore | |
], | |
outputs=[ | |
self.results.df, | |
self.results.predictions_plot, | |
self.results.messages, | |
], | |
show_progress=True, | |
) | |
self.stop.click(stop) | |
def last_part(k: str) -> str: | |
return k.split(".")[-1] | |
def create_processing_function(interface: AppInterface, ignore=[]): | |
d = flatten_attributes(interface, "interface", OrderedDict()) | |
keys = [k for k in map(last_part, d.keys()) if k not in ignore] | |
_, idx, counts = np.unique(keys, return_index=True, return_counts=True) | |
if np.any(counts > 1): | |
raise AssertionError("Bad keys: " + ",".join(np.array(keys)[idx[counts > 1]])) | |
def f(*components): | |
n = len(components) | |
assert n == len(keys) | |
for output in processing(**{keys[i]: components[i] for i in range(n)}): | |
yield output | |
return f | |
def main(): | |
with gr.Blocks(theme="default") as demo: | |
_ = AppInterface(demo) | |
demo.launch(debug=True) | |
if __name__ == "__main__": | |
main() | |