Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
1858a22
1
Parent(s):
4c67c21
Add example plot to examples of docs
Browse files- docs/examples.md +109 -0
- docs/images/example_plot.png +0 -0
docs/examples.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Examples
|
2 |
+
|
3 |
+
### Preamble
|
4 |
+
|
5 |
+
```python
|
6 |
+
import numpy as np
|
7 |
+
from pysr import *
|
8 |
+
```
|
9 |
+
|
10 |
+
We'll also set up some default options that will
|
11 |
+
make these simple searches go faster (but are less optimal
|
12 |
+
for more complex searches).
|
13 |
+
|
14 |
+
```python
|
15 |
+
kwargs = dict(populations=5, niterations=5, annealing=True)
|
16 |
+
```
|
17 |
+
|
18 |
+
1. Simple search
|
19 |
+
|
20 |
+
Here's a simple example where we turn off multiprocessing,
|
21 |
+
and find the expression `2 cos(x3) + x0^2 - 2`.
|
22 |
+
|
23 |
+
```python
|
24 |
+
X = 2 * np.random.randn(100, 5)
|
25 |
+
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
|
26 |
+
expressions = pysr(X, y, binary_operators=["+", "-", "*", "/"], **kwargs)
|
27 |
+
print(best(expressions))
|
28 |
+
```
|
29 |
+
|
30 |
+
2. Custom operator
|
31 |
+
|
32 |
+
Here, we define a custom operator and use it to find an expression:
|
33 |
+
|
34 |
+
```python
|
35 |
+
X = 2 * np.random.randn(100, 5)
|
36 |
+
y = 1 / X[:, 0]
|
37 |
+
expressions = pysr(
|
38 |
+
X,
|
39 |
+
y,
|
40 |
+
binary_operators=["plus", "mult"],
|
41 |
+
unary_operators=["inv(x) = 1/x"],
|
42 |
+
**kwargs
|
43 |
+
)
|
44 |
+
print(best(expressions))
|
45 |
+
```
|
46 |
+
|
47 |
+
3. Multiple outputs
|
48 |
+
|
49 |
+
Here, we do the same thing, but with multiple expressions at once,
|
50 |
+
each requiring a different feature.
|
51 |
+
```python
|
52 |
+
X = 2 * np.random.randn(100, 5)
|
53 |
+
y = 1 / X[:, [0, 1, 2]]
|
54 |
+
expressions = pysr(
|
55 |
+
X,
|
56 |
+
y,
|
57 |
+
binary_operators=["plus", "mult"],
|
58 |
+
unary_operators=["inv(x) = 1/x"],
|
59 |
+
**kwargs
|
60 |
+
)
|
61 |
+
```
|
62 |
+
|
63 |
+
4. Plotting an expression
|
64 |
+
|
65 |
+
Here, let's use the same equations, but get a format we can actually
|
66 |
+
use and test. We can add this option after a search via the `get_hof`
|
67 |
+
function:
|
68 |
+
|
69 |
+
```python
|
70 |
+
expressions = get_hof(extra_sympy_mappings={"inv": lambda x: 1/x})
|
71 |
+
```
|
72 |
+
If you look at the lists of expressions before and after, you will
|
73 |
+
see that the sympy format now has replaced `inv` with `1/`.
|
74 |
+
|
75 |
+
For now, let's consider the expressions for output 0:
|
76 |
+
```python
|
77 |
+
expressions = expressions[0]
|
78 |
+
```
|
79 |
+
This is a pandas table, which we can filter:
|
80 |
+
```python
|
81 |
+
best_expression = expressions.iloc[expressions.MSE.argmin()]
|
82 |
+
```
|
83 |
+
We can see the LaTeX version of this with:
|
84 |
+
```python
|
85 |
+
import sympy
|
86 |
+
sympy.latex(best_expression.sympy_format)
|
87 |
+
```
|
88 |
+
|
89 |
+
We can access the numpy version with:
|
90 |
+
```python
|
91 |
+
f = best_expression.lambda_format
|
92 |
+
print(f)
|
93 |
+
```
|
94 |
+
|
95 |
+
Which shows a PySR object on numpy code:
|
96 |
+
```
|
97 |
+
>> PySRFunction(X=>1/x0)
|
98 |
+
```
|
99 |
+
|
100 |
+
Let's plot this against the truth:
|
101 |
+
```python
|
102 |
+
from matplotlib import pyplot as plt
|
103 |
+
plt.scatter(y[:, 0], f(X))
|
104 |
+
plt.xlabel('Truth')
|
105 |
+
plt.ylabel('Prediction')
|
106 |
+
plt.show()
|
107 |
+
```
|
108 |
+
Which gives us:
|
109 |
+
![](./images/example_plot.png)
|
docs/images/example_plot.png
ADDED