MilesCranmer commited on
Commit
24f5dee
·
1 Parent(s): 4163a66

Fix union of types in docstrings

Browse files
Files changed (1) hide show
  1. pysr/sr.py +39 -31
pysr/sr.py CHANGED
@@ -334,7 +334,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
334
  (requires `annealing` to be `True`).
335
  annealing : bool, default=False
336
  Whether to use annealing.
337
- early_stop_condition : { float | str }, default=None
338
  Stop the search early if this loss is reached. You may also
339
  pass a string containing a Julia function which
340
  takes a loss and complexity as input, for example:
@@ -496,7 +496,7 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
496
 
497
  Attributes
498
  ----------
499
- equations_ : { pandas.DataFrame | list[pandas.DataFrame] }
500
  Processed DataFrame containing the results of model fitting.
501
  n_features_in_ : int
502
  Number of features seen during :term:`fit`.
@@ -1163,14 +1163,16 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1163
 
1164
  Parameters
1165
  ----------
1166
- X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1167
- Training data.
1168
- y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1169
- Target values. Will be cast to X's dtype if necessary.
1170
- Xresampled : {ndarray | pandas.DataFrame} of shape
 
1171
  (n_resampled, n_features), default=None
1172
  Resampled training data used for denoising.
1173
- weights : {ndarray | pandas.DataFrame} of the same shape as y
 
1174
  Each element is how to weight the mean-square-error loss
1175
  for that particular element of y.
1176
  variable_names : list[str] of length n_features
@@ -1242,15 +1244,17 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1242
 
1243
  Parameters
1244
  ----------
1245
- X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1246
- Training data.
1247
- y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1248
- Target values. Will be cast to X's dtype if necessary.
1249
- Xresampled : {ndarray | pandas.DataFrame} of shape
1250
- (n_resampled, n_features), default=None
1251
- Resampled training data used for denoising.
1252
- variable_names : list[str] of length n_features
 
1253
  Names of each variable in the training dataset, `X`.
 
1254
  random_state : int, Numpy RandomState instance or None, default=None
1255
  Pass an int for reproducible results across multiple function calls.
1256
  See :term:`Glossary <random_state>`.
@@ -1317,13 +1321,15 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1317
 
1318
  Parameters
1319
  ----------
1320
- X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1321
- Training data.
1322
- y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1323
- Target values. Will be cast to X's dtype if necessary.
 
1324
  mutated_params : dict[str, Any]
1325
  Dictionary of mutated versions of some parameters passed in __init__.
1326
- weights : {ndarray | pandas.DataFrame} of the same shape as y
 
1327
  Each element is how to weight the mean-square-error loss
1328
  for that particular element of y.
1329
  seed : int
@@ -1564,15 +1570,17 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1564
 
1565
  Parameters
1566
  ----------
1567
- X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1568
- Training data.
1569
- y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1570
- Target values. Will be cast to X's dtype if necessary.
1571
- Xresampled : {ndarray | pandas.DataFrame} of shape
1572
- (n_resampled, n_features), default=None
1573
- Resampled training data to generate a denoised data on. This
 
1574
  will be used as the training data, rather than `X`.
1575
- weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
 
1576
  Each element is how to weight the mean-square-error loss
1577
  for that particular element of `y`. Alternatively,
1578
  if a custom `loss` was set, it will can be used
@@ -1702,8 +1710,8 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1702
 
1703
  Parameters
1704
  ----------
1705
- X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1706
- Training data.
1707
 
1708
  index : int | list[int], default=None
1709
  If you want to compute the output of an expression using a
 
334
  (requires `annealing` to be `True`).
335
  annealing : bool, default=False
336
  Whether to use annealing.
337
+ early_stop_condition : float | str, default=None
338
  Stop the search early if this loss is reached. You may also
339
  pass a string containing a Julia function which
340
  takes a loss and complexity as input, for example:
 
496
 
497
  Attributes
498
  ----------
499
+ equations_ : pandas.DataFrame | list[pandas.DataFrame]
500
  Processed DataFrame containing the results of model fitting.
501
  n_features_in_ : int
502
  Number of features seen during :term:`fit`.
 
1163
 
1164
  Parameters
1165
  ----------
1166
+ X : ndarray | pandas.DataFrame
1167
+ Training data of shape `(n_samples, n_features)`.
1168
+ y : ndarray | pandas.DataFrame}
1169
+ Target values of shape `(n_samples,)` or `(n_samples, n_targets)`.
1170
+ Will be cast to `X`'s dtype if necessary.
1171
+ Xresampled : ndarray | pandas.DataFrame of shape
1172
  (n_resampled, n_features), default=None
1173
  Resampled training data used for denoising.
1174
+ weights : ndarray | pandas.DataFrame
1175
+ Weight array of the same shape as `y`.
1176
  Each element is how to weight the mean-square-error loss
1177
  for that particular element of y.
1178
  variable_names : list[str] of length n_features
 
1244
 
1245
  Parameters
1246
  ----------
1247
+ X : ndarray | pandas.DataFrame
1248
+ Training data of shape (n_samples, n_features).
1249
+ y : ndarray | pandas.DataFrame
1250
+ Target values of shape (n_samples,) or (n_samples, n_targets).
1251
+ Will be cast to X's dtype if necessary.
1252
+ Xresampled : ndarray | pandas.DataFrame, default=None
1253
+ Resampled training data, of shape `(n_resampled, n_features)`,
1254
+ used for denoising.
1255
+ variable_names : list[str]
1256
  Names of each variable in the training dataset, `X`.
1257
+ Of length `n_features`.
1258
  random_state : int, Numpy RandomState instance or None, default=None
1259
  Pass an int for reproducible results across multiple function calls.
1260
  See :term:`Glossary <random_state>`.
 
1321
 
1322
  Parameters
1323
  ----------
1324
+ X : ndarray | pandas.DataFrame
1325
+ Training data of shape `(n_samples, n_features)`.
1326
+ y : ndarray | pandas.DataFrame
1327
+ Target values of shape `(n_samples,)` or `(n_samples, n_targets)`.
1328
+ Will be cast to `X`'s dtype if necessary.
1329
  mutated_params : dict[str, Any]
1330
  Dictionary of mutated versions of some parameters passed in __init__.
1331
+ weights : ndarray | pandas.DataFrame
1332
+ Weight array of the same shape as `y`.
1333
  Each element is how to weight the mean-square-error loss
1334
  for that particular element of y.
1335
  seed : int
 
1570
 
1571
  Parameters
1572
  ----------
1573
+ X : ndarray | pandas.DataFrame
1574
+ Training data of shape (n_samples, n_features).
1575
+ y : ndarray | pandas.DataFrame
1576
+ Target values of shape (n_samples,) or (n_samples, n_targets).
1577
+ Will be cast to X's dtype if necessary.
1578
+ Xresampled : ndarray | pandas.DataFrame, default=None
1579
+ Resampled training data, of shape (n_resampled, n_features),
1580
+ to generate a denoised data on. This
1581
  will be used as the training data, rather than `X`.
1582
+ weights : ndarray | pandas.DataFrame, default=None
1583
+ Weight array of the same shape as `y`.
1584
  Each element is how to weight the mean-square-error loss
1585
  for that particular element of `y`. Alternatively,
1586
  if a custom `loss` was set, it will can be used
 
1710
 
1711
  Parameters
1712
  ----------
1713
+ X : ndarray | pandas.DataFrame
1714
+ Training data of shape `(n_samples, n_features)`.
1715
 
1716
  index : int | list[int], default=None
1717
  If you want to compute the output of an expression using a