MilesCranmer commited on
Commit
32cadad
1 Parent(s): 06aebb6

Update docs to use `seval`

Browse files
Files changed (2) hide show
  1. docs/examples.md +5 -7
  2. pysr/test/test.py +2 -2
docs/examples.md CHANGED
@@ -189,12 +189,10 @@ where $p_i$ is the $i$th prime number, and $x$ is the input feature.
189
  Let's see if we can discover this using
190
  the [Primes.jl](https://github.com/JuliaMath/Primes.jl) package.
191
 
192
- First, let's manually initialize the Julia backend
193
- (here, with 8 threads and `-O3`):
194
 
195
  ```python
196
- import pysr
197
- jl = pysr.julia_helpers.init_julia(julia_kwargs={"threads": 8, "optimize": 3})
198
  ```
199
 
200
  `jl` stores the Julia runtime.
@@ -203,7 +201,7 @@ Now, let's run some Julia code to add the Primes.jl
203
  package to the PySR environment:
204
 
205
  ```python
206
- jl.eval("""
207
  import Pkg
208
  Pkg.add("Primes")
209
  """)
@@ -213,13 +211,13 @@ This imports the Julia package manager, and uses it to install
213
  `Primes.jl`. Now let's import `Primes.jl`:
214
 
215
  ```python
216
- jl.eval("import Primes")
217
  ```
218
 
219
  Now, we define a custom operator:
220
 
221
  ```python
222
- jl.eval("""
223
  function p(i::T) where T
224
  if (0.5 < i < 1000)
225
  return T(Primes.prime(round(Int, i)))
 
189
  Let's see if we can discover this using
190
  the [Primes.jl](https://github.com/JuliaMath/Primes.jl) package.
191
 
192
+ First, let's get the Julia backend:
 
193
 
194
  ```python
195
+ from pysr import jl
 
196
  ```
197
 
198
  `jl` stores the Julia runtime.
 
201
  package to the PySR environment:
202
 
203
  ```python
204
+ jl.seval("""
205
  import Pkg
206
  Pkg.add("Primes")
207
  """)
 
211
  `Primes.jl`. Now let's import `Primes.jl`:
212
 
213
  ```python
214
+ jl.seval("import Primes")
215
  ```
216
 
217
  Now, we define a custom operator:
218
 
219
  ```python
220
+ jl.seval("""
221
  function p(i::T) where T
222
  if (0.5 < i < 1000)
223
  return T(Primes.prime(round(Int, i)))
pysr/test/test.py CHANGED
@@ -229,11 +229,11 @@ class TestPipeline(unittest.TestCase):
229
  early_stop_condition=None,
230
  )
231
  # Check that the the julia state is saved:
232
- from pysr.sr import jl
233
 
234
  # We should have that the model state is now a Float32 hof:
235
  jl.test_state = regressor.raw_julia_state_
236
- self.assertTrue(jl.eval("typeof(test_state[2]).parameters[1] == Float32"))
237
  # This should exit almost immediately, and use the old equations
238
  regressor.fit(X, y)
239
 
 
229
  early_stop_condition=None,
230
  )
231
  # Check that the the julia state is saved:
232
+ from pysr import jl
233
 
234
  # We should have that the model state is now a Float32 hof:
235
  jl.test_state = regressor.raw_julia_state_
236
+ self.assertTrue(jl.seval("typeof(test_state[2]).parameters[1] == Float32"))
237
  # This should exit almost immediately, and use the old equations
238
  regressor.fit(X, y)
239