Spaces:
Running
Running
MilesCranmer
commited on
Output more useful errors
Browse files- gui/app.py +28 -5
gui/app.py
CHANGED
@@ -2,6 +2,8 @@ import io
|
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import tempfile
|
|
|
|
|
5 |
|
6 |
|
7 |
def greet(
|
@@ -11,8 +13,28 @@ def greet(
|
|
11 |
binary_operators: list,
|
12 |
unary_operators: list,
|
13 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
if col_to_fit == "":
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
niterations = int(niterations)
|
17 |
# Need to install PySR in separate python instance:
|
18 |
os.system(
|
@@ -22,8 +44,6 @@ def greet(
|
|
22 |
fi"""
|
23 |
)
|
24 |
from pysr import PySRRegressor
|
25 |
-
import numpy as np
|
26 |
-
import pandas as pd
|
27 |
|
28 |
df = pd.read_csv(file_obj.name)
|
29 |
y = np.array(df[col_to_fit])
|
@@ -38,7 +58,10 @@ def greet(
|
|
38 |
)
|
39 |
model.fit(X, y)
|
40 |
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
def main():
|
@@ -65,7 +88,7 @@ def main():
|
|
65 |
value=[],
|
66 |
),
|
67 |
],
|
68 |
-
outputs="dataframe",
|
69 |
)
|
70 |
# Add file to the demo:
|
71 |
|
|
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import tempfile
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
|
8 |
|
9 |
def greet(
|
|
|
13 |
binary_operators: list,
|
14 |
unary_operators: list,
|
15 |
):
|
16 |
+
empty_df = pd.DataFrame(
|
17 |
+
{
|
18 |
+
"equation": [],
|
19 |
+
"loss": [],
|
20 |
+
"complexity": [],
|
21 |
+
}
|
22 |
+
)
|
23 |
if col_to_fit == "":
|
24 |
+
return (
|
25 |
+
empty_df,
|
26 |
+
"Please enter a column to predict!",
|
27 |
+
)
|
28 |
+
if len(binary_operators) == 0 and len(unary_operators) == 0:
|
29 |
+
return (
|
30 |
+
empty_df,
|
31 |
+
"Please select at least one operator!",
|
32 |
+
)
|
33 |
+
if file_obj is None:
|
34 |
+
return (
|
35 |
+
empty_df,
|
36 |
+
"Please upload a CSV file!",
|
37 |
+
)
|
38 |
niterations = int(niterations)
|
39 |
# Need to install PySR in separate python instance:
|
40 |
os.system(
|
|
|
44 |
fi"""
|
45 |
)
|
46 |
from pysr import PySRRegressor
|
|
|
|
|
47 |
|
48 |
df = pd.read_csv(file_obj.name)
|
49 |
y = np.array(df[col_to_fit])
|
|
|
58 |
)
|
59 |
model.fit(X, y)
|
60 |
|
61 |
+
df = model.equations_[["equation", "loss", "complexity"]]
|
62 |
+
# Convert all columns to string type:
|
63 |
+
df = df.astype(str)
|
64 |
+
return df, "Successful."
|
65 |
|
66 |
|
67 |
def main():
|
|
|
88 |
value=[],
|
89 |
),
|
90 |
],
|
91 |
+
outputs=["dataframe", "text"],
|
92 |
)
|
93 |
# Add file to the demo:
|
94 |
|