MilesCranmer commited on
Commit
51b7bbd
·
1 Parent(s): f7ce7ac

Tweak docs formatting

Browse files
Files changed (1) hide show
  1. pysr/sr.py +2 -30
pysr/sr.py CHANGED
@@ -1,4 +1,4 @@
1
- """Defines the PySRRegressor scikit-learn interface."""
2
  import copy
3
  import os
4
  import sys
@@ -777,32 +777,25 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
777
  equation_file : str
778
  Path to a pickle file containing a saved model, or a csv file
779
  containing equations.
780
-
781
  binary_operators : list[str]
782
  The same binary operators used when creating the model.
783
  Not needed if loading from a pickle file.
784
-
785
  unary_operators : list[str]
786
  The same unary operators used when creating the model.
787
  Not needed if loading from a pickle file.
788
-
789
  n_features_in : int
790
  Number of features passed to the model.
791
  Not needed if loading from a pickle file.
792
-
793
  feature_names_in : list[str]
794
  Names of the features passed to the model.
795
  Not needed if loading from a pickle file.
796
-
797
  selection_mask : list[bool]
798
  If using select_k_features, you must pass `model.selection_mask_` here.
799
  Not needed if loading from a pickle file.
800
-
801
  nout : int, default=1
802
  Number of outputs of the model.
803
  Not needed if loading from a pickle file.
804
-
805
- pysr_kwargs : dict
806
  Any other keyword arguments to initialize the PySRRegressor object.
807
  These will overwrite those stored in the pickle file.
808
  Not needed if loading from a pickle file.
@@ -1174,18 +1167,14 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1174
  ----------
1175
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1176
  Training data.
1177
-
1178
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1179
  Target values. Will be cast to X's dtype if necessary.
1180
-
1181
  Xresampled : {ndarray | pandas.DataFrame} of shape
1182
  (n_resampled, n_features), default=None
1183
  Resampled training data used for denoising.
1184
-
1185
  weights : {ndarray | pandas.DataFrame} of the same shape as y
1186
  Each element is how to weight the mean-square-error loss
1187
  for that particular element of y.
1188
-
1189
  variable_names : list[str] of length n_features
1190
  Names of each variable in the training dataset, `X`.
1191
 
@@ -1193,13 +1182,10 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1193
  -------
1194
  X_validated : ndarray of shape (n_samples, n_features)
1195
  Validated training data.
1196
-
1197
  y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
1198
  Validated target data.
1199
-
1200
  Xresampled : ndarray of shape (n_resampled, n_features)
1201
  Validated resampled training data used for denoising.
1202
-
1203
  variable_names_validated : list[str] of length n_features
1204
  Validated list of variable names for each feature in `X`.
1205
 
@@ -1260,17 +1246,13 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1260
  ----------
1261
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1262
  Training data.
1263
-
1264
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1265
  Target values. Will be cast to X's dtype if necessary.
1266
-
1267
  Xresampled : {ndarray | pandas.DataFrame} of shape
1268
  (n_resampled, n_features), default=None
1269
  Resampled training data used for denoising.
1270
-
1271
  variable_names : list[str] of length n_features
1272
  Names of each variable in the training dataset, `X`.
1273
-
1274
  random_state : int, Numpy RandomState instance or None, default=None
1275
  Pass an int for reproducible results across multiple function calls.
1276
  See :term:`Glossary <random_state>`.
@@ -1284,13 +1266,11 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1284
  equal to :param`X.shape[0]`. n_features will be equal to
1285
  :param`self.select_k_features` if `self.select_k_features is not None`,
1286
  otherwise it will be equal to :param`X.shape[1]`
1287
-
1288
  y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
1289
  Transformed target data. n_samples will be equal to
1290
  :param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
1291
  and :param`Xresampled is not None`, otherwise it will be
1292
  equal to :param`X.shape[0]`.
1293
-
1294
  variable_names_transformed : list[str] of length n_features
1295
  Names of each variable in the transformed dataset,
1296
  `X_transformed`.
@@ -1341,17 +1321,13 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1341
  ----------
1342
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1343
  Training data.
1344
-
1345
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1346
  Target values. Will be cast to X's dtype if necessary.
1347
-
1348
  mutated_params : dict[str, Any]
1349
  Dictionary of mutated versions of some parameters passed in __init__.
1350
-
1351
  weights : {ndarray | pandas.DataFrame} of the same shape as y
1352
  Each element is how to weight the mean-square-error loss
1353
  for that particular element of y.
1354
-
1355
  seed : int
1356
  Random seed for julia backend process.
1357
 
@@ -1592,21 +1568,17 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
1592
  ----------
1593
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1594
  Training data.
1595
-
1596
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1597
  Target values. Will be cast to X's dtype if necessary.
1598
-
1599
  Xresampled : {ndarray | pandas.DataFrame} of shape
1600
  (n_resampled, n_features), default=None
1601
  Resampled training data to generate a denoised data on. This
1602
  will be used as the training data, rather than `X`.
1603
-
1604
  weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
1605
  Each element is how to weight the mean-square-error loss
1606
  for that particular element of `y`. Alternatively,
1607
  if a custom `loss` was set, it will can be used
1608
  in arbitrary ways.
1609
-
1610
  variable_names : list[str], default=None
1611
  A list of names for the variables, rather than "x0", "x1", etc.
1612
  If :param`X` is a pandas dataframe, the column names will be used
 
1
+ """Define the PySRRegressor scikit-learn interface."""
2
  import copy
3
  import os
4
  import sys
 
777
  equation_file : str
778
  Path to a pickle file containing a saved model, or a csv file
779
  containing equations.
 
780
  binary_operators : list[str]
781
  The same binary operators used when creating the model.
782
  Not needed if loading from a pickle file.
 
783
  unary_operators : list[str]
784
  The same unary operators used when creating the model.
785
  Not needed if loading from a pickle file.
 
786
  n_features_in : int
787
  Number of features passed to the model.
788
  Not needed if loading from a pickle file.
 
789
  feature_names_in : list[str]
790
  Names of the features passed to the model.
791
  Not needed if loading from a pickle file.
 
792
  selection_mask : list[bool]
793
  If using select_k_features, you must pass `model.selection_mask_` here.
794
  Not needed if loading from a pickle file.
 
795
  nout : int, default=1
796
  Number of outputs of the model.
797
  Not needed if loading from a pickle file.
798
+ **pysr_kwargs : dict
 
799
  Any other keyword arguments to initialize the PySRRegressor object.
800
  These will overwrite those stored in the pickle file.
801
  Not needed if loading from a pickle file.
 
1167
  ----------
1168
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1169
  Training data.
 
1170
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1171
  Target values. Will be cast to X's dtype if necessary.
 
1172
  Xresampled : {ndarray | pandas.DataFrame} of shape
1173
  (n_resampled, n_features), default=None
1174
  Resampled training data used for denoising.
 
1175
  weights : {ndarray | pandas.DataFrame} of the same shape as y
1176
  Each element is how to weight the mean-square-error loss
1177
  for that particular element of y.
 
1178
  variable_names : list[str] of length n_features
1179
  Names of each variable in the training dataset, `X`.
1180
 
 
1182
  -------
1183
  X_validated : ndarray of shape (n_samples, n_features)
1184
  Validated training data.
 
1185
  y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
1186
  Validated target data.
 
1187
  Xresampled : ndarray of shape (n_resampled, n_features)
1188
  Validated resampled training data used for denoising.
 
1189
  variable_names_validated : list[str] of length n_features
1190
  Validated list of variable names for each feature in `X`.
1191
 
 
1246
  ----------
1247
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1248
  Training data.
 
1249
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1250
  Target values. Will be cast to X's dtype if necessary.
 
1251
  Xresampled : {ndarray | pandas.DataFrame} of shape
1252
  (n_resampled, n_features), default=None
1253
  Resampled training data used for denoising.
 
1254
  variable_names : list[str] of length n_features
1255
  Names of each variable in the training dataset, `X`.
 
1256
  random_state : int, Numpy RandomState instance or None, default=None
1257
  Pass an int for reproducible results across multiple function calls.
1258
  See :term:`Glossary <random_state>`.
 
1266
  equal to :param`X.shape[0]`. n_features will be equal to
1267
  :param`self.select_k_features` if `self.select_k_features is not None`,
1268
  otherwise it will be equal to :param`X.shape[1]`
 
1269
  y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
1270
  Transformed target data. n_samples will be equal to
1271
  :param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
1272
  and :param`Xresampled is not None`, otherwise it will be
1273
  equal to :param`X.shape[0]`.
 
1274
  variable_names_transformed : list[str] of length n_features
1275
  Names of each variable in the transformed dataset,
1276
  `X_transformed`.
 
1321
  ----------
1322
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1323
  Training data.
 
1324
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1325
  Target values. Will be cast to X's dtype if necessary.
 
1326
  mutated_params : dict[str, Any]
1327
  Dictionary of mutated versions of some parameters passed in __init__.
 
1328
  weights : {ndarray | pandas.DataFrame} of the same shape as y
1329
  Each element is how to weight the mean-square-error loss
1330
  for that particular element of y.
 
1331
  seed : int
1332
  Random seed for julia backend process.
1333
 
 
1568
  ----------
1569
  X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
1570
  Training data.
 
1571
  y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
1572
  Target values. Will be cast to X's dtype if necessary.
 
1573
  Xresampled : {ndarray | pandas.DataFrame} of shape
1574
  (n_resampled, n_features), default=None
1575
  Resampled training data to generate a denoised data on. This
1576
  will be used as the training data, rather than `X`.
 
1577
  weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
1578
  Each element is how to weight the mean-square-error loss
1579
  for that particular element of `y`. Alternatively,
1580
  if a custom `loss` was set, it will can be used
1581
  in arbitrary ways.
 
1582
  variable_names : list[str], default=None
1583
  A list of names for the variables, rather than "x0", "x1", etc.
1584
  If :param`X` is a pandas dataframe, the column names will be used