Spaces:
Running
Running
MilesCranmer
commited on
Merge pull request #110 from MilesCranmer/deepsource-transform-024a00e7
Browse files- benchmarks/hyperparamopt.py +1 -0
- benchmarks/print_best_model.py +27 -28
benchmarks/hyperparamopt.py
CHANGED
@@ -267,6 +267,7 @@ def merge_trials(trials1, trials2_slice):
|
|
267 |
|
268 |
|
269 |
import glob
|
|
|
270 |
path = TRIALS_FOLDER + "/*.pkl"
|
271 |
n_prior_trials = len(list(glob.glob(path)))
|
272 |
|
|
|
267 |
|
268 |
|
269 |
import glob
|
270 |
+
|
271 |
path = TRIALS_FOLDER + "/*.pkl"
|
272 |
n_prior_trials = len(list(glob.glob(path)))
|
273 |
|
benchmarks/print_best_model.py
CHANGED
@@ -6,12 +6,13 @@ import hyperopt
|
|
6 |
from hyperopt import hp, fmin, tpe, Trials
|
7 |
|
8 |
|
9 |
-
#Change the following code to your file
|
10 |
################################################################################
|
11 |
# TODO: Declare a folder to hold all trials objects
|
12 |
-
TRIALS_FOLDER =
|
13 |
################################################################################
|
14 |
|
|
|
15 |
def merge_trials(trials1, trials2_slice):
|
16 |
"""Merge two hyperopt trials objects
|
17 |
|
@@ -23,43 +24,43 @@ def merge_trials(trials1, trials2_slice):
|
|
23 |
"""
|
24 |
max_tid = 0
|
25 |
if len(trials1.trials) > 0:
|
26 |
-
max_tid = max([trial[
|
27 |
|
28 |
for trial in trials2_slice:
|
29 |
-
tid = trial[
|
30 |
hyperopt_trial = Trials().new_trial_docs(
|
31 |
-
|
32 |
-
|
33 |
-
results=[None],
|
34 |
-
miscs=[None])
|
35 |
hyperopt_trial[0] = trial
|
36 |
-
hyperopt_trial[0][
|
37 |
-
hyperopt_trial[0][
|
38 |
-
for key in hyperopt_trial[0][
|
39 |
-
hyperopt_trial[0][
|
40 |
-
trials1.insert_trial_docs(hyperopt_trial)
|
41 |
trials1.refresh()
|
42 |
return trials1
|
43 |
|
|
|
44 |
np.random.seed()
|
45 |
|
46 |
# Load up all runs:
|
47 |
import glob
|
48 |
-
|
|
|
49 |
files = 0
|
50 |
for fname in glob.glob(path):
|
51 |
|
52 |
-
trials_obj = pkl.load(open(fname,
|
53 |
-
n_trials = trials_obj[
|
54 |
-
trials_obj = trials_obj[
|
55 |
-
if files == 0:
|
56 |
trials = trials_obj
|
57 |
else:
|
58 |
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
|
59 |
files += 1
|
60 |
|
61 |
|
62 |
-
print(files,
|
63 |
|
64 |
|
65 |
best_loss = np.inf
|
@@ -70,22 +71,20 @@ except NameError:
|
|
70 |
raise NameError("No trials loaded. Be sure to set the right folder")
|
71 |
|
72 |
# for trial in trials:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
|
79 |
# print(best_loss, best_trial['misc']['vals'])
|
80 |
-
#trials = sorted(trials, key=lambda x: (x['result']['loss'] if trials['result']['status'] == 'ok' else float('inf')))
|
81 |
|
82 |
clean_trials = []
|
83 |
for trial in trials:
|
84 |
-
clean_trials.append((trial[
|
85 |
|
86 |
clean_trials = sorted(clean_trials, key=lambda x: x[0])
|
87 |
|
88 |
for trial in clean_trials:
|
89 |
print(trial)
|
90 |
-
|
91 |
-
|
|
|
6 |
from hyperopt import hp, fmin, tpe, Trials
|
7 |
|
8 |
|
9 |
+
# Change the following code to your file
|
10 |
################################################################################
|
11 |
# TODO: Declare a folder to hold all trials objects
|
12 |
+
TRIALS_FOLDER = "trials2"
|
13 |
################################################################################
|
14 |
|
15 |
+
|
16 |
def merge_trials(trials1, trials2_slice):
|
17 |
"""Merge two hyperopt trials objects
|
18 |
|
|
|
24 |
"""
|
25 |
max_tid = 0
|
26 |
if len(trials1.trials) > 0:
|
27 |
+
max_tid = max([trial["tid"] for trial in trials1.trials])
|
28 |
|
29 |
for trial in trials2_slice:
|
30 |
+
tid = trial["tid"] + max_tid + 1
|
31 |
hyperopt_trial = Trials().new_trial_docs(
|
32 |
+
tids=[None], specs=[None], results=[None], miscs=[None]
|
33 |
+
)
|
|
|
|
|
34 |
hyperopt_trial[0] = trial
|
35 |
+
hyperopt_trial[0]["tid"] = tid
|
36 |
+
hyperopt_trial[0]["misc"]["tid"] = tid
|
37 |
+
for key in hyperopt_trial[0]["misc"]["idxs"].keys():
|
38 |
+
hyperopt_trial[0]["misc"]["idxs"][key] = [tid]
|
39 |
+
trials1.insert_trial_docs(hyperopt_trial)
|
40 |
trials1.refresh()
|
41 |
return trials1
|
42 |
|
43 |
+
|
44 |
np.random.seed()
|
45 |
|
46 |
# Load up all runs:
|
47 |
import glob
|
48 |
+
|
49 |
+
path = TRIALS_FOLDER + "/*.pkl"
|
50 |
files = 0
|
51 |
for fname in glob.glob(path):
|
52 |
|
53 |
+
trials_obj = pkl.load(open(fname, "rb"))
|
54 |
+
n_trials = trials_obj["n"]
|
55 |
+
trials_obj = trials_obj["trials"]
|
56 |
+
if files == 0:
|
57 |
trials = trials_obj
|
58 |
else:
|
59 |
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
|
60 |
files += 1
|
61 |
|
62 |
|
63 |
+
print(files, "trials merged")
|
64 |
|
65 |
|
66 |
best_loss = np.inf
|
|
|
71 |
raise NameError("No trials loaded. Be sure to set the right folder")
|
72 |
|
73 |
# for trial in trials:
|
74 |
+
# if trial['result']['status'] == 'ok':
|
75 |
+
# loss = trial['result']['loss']
|
76 |
+
# if loss < best_loss:
|
77 |
+
# best_loss = loss
|
78 |
+
# best_trial = trial
|
79 |
|
80 |
# print(best_loss, best_trial['misc']['vals'])
|
81 |
+
# trials = sorted(trials, key=lambda x: (x['result']['loss'] if trials['result']['status'] == 'ok' else float('inf')))
|
82 |
|
83 |
clean_trials = []
|
84 |
for trial in trials:
|
85 |
+
clean_trials.append((trial["result"]["loss"], trial["misc"]["vals"]))
|
86 |
|
87 |
clean_trials = sorted(clean_trials, key=lambda x: x[0])
|
88 |
|
89 |
for trial in clean_trials:
|
90 |
print(trial)
|
|
|
|