MilesCranmer commited on
Commit
67558da
·
1 Parent(s): 0a3b812

Warm up to a fraction of total training time

Browse files
Files changed (3) hide show
  1. Project.toml +1 -1
  2. pysr/sr.py +10 -8
  3. setup.py +1 -1
Project.toml CHANGED
@@ -2,5 +2,5 @@
2
  SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"
3
 
4
  [compat]
5
- SymbolicRegression = "0.5.9"
6
  julia = "1.5"
 
2
  SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"
3
 
4
  [compat]
5
+ SymbolicRegression = "0.5.10"
6
  julia = "1.5"
pysr/sr.py CHANGED
@@ -97,7 +97,7 @@ def pysr(X=None, y=None, weights=None,
97
  batching=False,
98
  batchSize=50,
99
  select_k_features=None,
100
- warmupMaxsize=0,
101
  constraints={},
102
  useFrequency=False,
103
  tempdir=None,
@@ -106,7 +106,8 @@ def pysr(X=None, y=None, weights=None,
106
  julia_project=None,
107
  user_input=True,
108
  update=True,
109
- temp_equation_file=False
 
110
  ):
111
  """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
112
  Note: most default parameters have been tuned over several example
@@ -191,10 +192,10 @@ def pysr(X=None, y=None, weights=None,
191
  Python using random forests, before passing to the symbolic regression
192
  code. None means no feature selection; an int means select that many
193
  features.
194
- :param warmupMaxsize: int, whether to slowly increase max size from
195
  a small number up to the maxsize (if greater than 0).
196
- If greater than 0, says how many cycles before the maxsize
197
- is increased.
198
  :param constraints: dict of int (unary) or 2-tuples (binary),
199
  this enforces maxsize constraints on the individual
200
  arguments of operators. E.g., `'pow': (-1, 1)`
@@ -220,6 +221,7 @@ def pysr(X=None, y=None, weights=None,
220
  (as strings).
221
 
222
  """
 
223
  if isinstance(X, pd.DataFrame):
224
  variable_names = list(X.columns)
225
  X = np.array(X)
@@ -269,7 +271,7 @@ def pysr(X=None, y=None, weights=None,
269
  shouldOptimizeConstants=shouldOptimizeConstants,
270
  unary_operators=unary_operators, useFrequency=useFrequency,
271
  use_custom_variable_names=use_custom_variable_names,
272
- variable_names=variable_names, warmupMaxsize=warmupMaxsize,
273
  weightAddNode=weightAddNode,
274
  weightDeleteNode=weightDeleteNode,
275
  weightDoNothing=weightDoNothing,
@@ -418,7 +420,7 @@ def _make_hyperparams_julia_str(X, alpha, annealing, batchSize, batching, binary
418
  maxdepth, maxsize, migration, nrestarts, npop,
419
  parsimony, perturbationFactor, populations, procs, shouldOptimizeConstants,
420
  unary_operators, useFrequency, use_custom_variable_names,
421
- variable_names, warmupMaxsize, weightAddNode,
422
  ncyclesperiteration, fractionReplaced, topn, verbosity, progress, loss,
423
  weightDeleteNode, weightDoNothing, weightInsertNode, weightMutateConstant,
424
  weightMutateOperator, weightRandomize, weightSimplify, weights, **kwargs):
@@ -483,7 +485,7 @@ mutationWeights=[
483
  {weightRandomize:f},
484
  {weightDoNothing:f}
485
  ],
486
- warmupMaxsize={warmupMaxsize:d},
487
  useFrequency={"true" if useFrequency else "false"},
488
  npop={npop:d},
489
  ncyclesperiteration={ncyclesperiteration:d},
 
97
  batching=False,
98
  batchSize=50,
99
  select_k_features=None,
100
+ warmupMaxsizeBy=0.0,
101
  constraints={},
102
  useFrequency=False,
103
  tempdir=None,
 
106
  julia_project=None,
107
  user_input=True,
108
  update=True,
109
+ temp_equation_file=False,
110
+ warmupMaxsize=None, #Deprecated
111
  ):
112
  """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
113
  Note: most default parameters have been tuned over several example
 
192
  Python using random forests, before passing to the symbolic regression
193
  code. None means no feature selection; an int means select that many
194
  features.
195
+ :param warmupMaxsizeBy: float, whether to slowly increase max size from
196
  a small number up to the maxsize (if greater than 0).
197
+ If greater than 0, says the fraction of training time at which
198
+ the current maxsize will reach the user-passed maxsize.
199
  :param constraints: dict of int (unary) or 2-tuples (binary),
200
  this enforces maxsize constraints on the individual
201
  arguments of operators. E.g., `'pow': (-1, 1)`
 
221
  (as strings).
222
 
223
  """
224
+ assert warmupMaxsize == None, "warmupMaxsize is deprecated. Use warmupMaxsizeBy and give a fraction of time."
225
  if isinstance(X, pd.DataFrame):
226
  variable_names = list(X.columns)
227
  X = np.array(X)
 
271
  shouldOptimizeConstants=shouldOptimizeConstants,
272
  unary_operators=unary_operators, useFrequency=useFrequency,
273
  use_custom_variable_names=use_custom_variable_names,
274
+ variable_names=variable_names, warmupMaxsizeBy=warmupMaxsizeBy,
275
  weightAddNode=weightAddNode,
276
  weightDeleteNode=weightDeleteNode,
277
  weightDoNothing=weightDoNothing,
 
420
  maxdepth, maxsize, migration, nrestarts, npop,
421
  parsimony, perturbationFactor, populations, procs, shouldOptimizeConstants,
422
  unary_operators, useFrequency, use_custom_variable_names,
423
+ variable_names, warmupMaxsizeBy, weightAddNode,
424
  ncyclesperiteration, fractionReplaced, topn, verbosity, progress, loss,
425
  weightDeleteNode, weightDoNothing, weightInsertNode, weightMutateConstant,
426
  weightMutateOperator, weightRandomize, weightSimplify, weights, **kwargs):
 
485
  {weightRandomize:f},
486
  {weightDoNothing:f}
487
  ],
488
+ warmupMaxsizeBy={warmupMaxsizeBy:f}f0,
489
  useFrequency={"true" if useFrequency else "false"},
490
  npop={npop:d},
491
  ncyclesperiteration={ncyclesperiteration:d},
setup.py CHANGED
@@ -5,7 +5,7 @@ with open("README.md", "r") as fh:
5
 
6
  setuptools.setup(
7
  name="pysr", # Replace with your own username
8
- version="0.5.9",
9
  author="Miles Cranmer",
10
  author_email="miles.cranmer@gmail.com",
11
  description="Simple and efficient symbolic regression",
 
5
 
6
  setuptools.setup(
7
  name="pysr", # Replace with your own username
8
+ version="0.5.10",
9
  author="Miles Cranmer",
10
  author_email="miles.cranmer@gmail.com",
11
  description="Simple and efficient symbolic regression",