Spaces:
Running
Running
MilesCranmer
commited on
Make nicer plot for example data
Browse files- gui/app.py +50 -53
gui/app.py
CHANGED
@@ -19,12 +19,13 @@ empty_df = pd.DataFrame(
|
|
19 |
)
|
20 |
|
21 |
test_equations = [
|
22 |
-
"sin(
|
23 |
]
|
24 |
|
25 |
|
26 |
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
|
27 |
-
|
|
|
28 |
for (k, v) in {
|
29 |
"sin": "np.sin",
|
30 |
"cos": "np.cos",
|
@@ -35,7 +36,6 @@ def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
|
|
35 |
}.items():
|
36 |
s = s.replace(k, v)
|
37 |
y = eval(s)
|
38 |
-
rstate = np.random.RandomState(data_seed)
|
39 |
noise = rstate.normal(0, noise_level, y.shape)
|
40 |
y_noisy = y + noise
|
41 |
return pd.DataFrame({"x": x}), y_noisy
|
@@ -101,30 +101,37 @@ def _greet_dispatch(
|
|
101 |
),
|
102 |
)
|
103 |
process.start()
|
|
|
104 |
while process.is_alive():
|
105 |
if equation_file_bkup.exists():
|
106 |
try:
|
107 |
# First, copy the file to a the copy file
|
108 |
equation_file_copy = base / "hall_of_fame_copy.csv"
|
109 |
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
|
110 |
-
|
111 |
# Ensure it is pareto dominated, with more complex expressions
|
112 |
# having higher loss. Otherwise remove those rows.
|
113 |
# TODO: Not sure why this occurs; could be the result of a late copy?
|
114 |
-
|
115 |
-
|
116 |
bad_idx = []
|
117 |
min_loss = None
|
118 |
-
for i in
|
119 |
-
if min_loss is None or
|
120 |
-
min_loss = float(
|
121 |
else:
|
122 |
bad_idx.append(i)
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
except pd.errors.EmptyDataError:
|
126 |
pass
|
127 |
-
|
128 |
|
129 |
process.join()
|
130 |
|
@@ -163,31 +170,23 @@ def greet(
|
|
163 |
def _data_layout():
|
164 |
with gr.Tab("Example Data"):
|
165 |
# Plot of the example data:
|
166 |
-
example_plot = gr.
|
167 |
-
x="x",
|
168 |
-
y="y",
|
169 |
-
tooltip=["x", "y"],
|
170 |
-
x_lim=[0, 10],
|
171 |
-
y_lim=[-5, 5],
|
172 |
-
width=350,
|
173 |
-
height=300,
|
174 |
-
)
|
175 |
test_equation = gr.Radio(
|
176 |
test_equations, value=test_equations[0], label="Test Equation"
|
177 |
)
|
178 |
num_points = gr.Slider(
|
179 |
minimum=10,
|
180 |
maximum=1000,
|
181 |
-
value=
|
182 |
label="Number of Data Points",
|
183 |
step=1,
|
184 |
)
|
185 |
-
noise_level = gr.Slider(minimum=0, maximum=1, value=0.
|
186 |
data_seed = gr.Number(value=0, label="Random Seed")
|
187 |
with gr.Tab("Upload Data"):
|
188 |
file_input = gr.File(label="Upload a CSV File")
|
189 |
gr.Markdown(
|
190 |
-
"
|
191 |
)
|
192 |
|
193 |
return dict(
|
@@ -219,7 +218,7 @@ def _settings_layout():
|
|
219 |
"tan",
|
220 |
],
|
221 |
label="Unary Operators",
|
222 |
-
value=[],
|
223 |
)
|
224 |
niterations = gr.Slider(
|
225 |
minimum=1,
|
@@ -304,43 +303,17 @@ def main():
|
|
304 |
for eqn_component in eqn_components:
|
305 |
eqn_component.change(replot, eqn_components, blocks["example_plot"])
|
306 |
|
|
|
307 |
# Update plot when dataframe is updated:
|
308 |
blocks["df"].change(
|
309 |
replot_pareto,
|
310 |
inputs=[blocks["df"], blocks["maxsize"]],
|
311 |
outputs=[blocks["pareto"]],
|
312 |
)
|
|
|
313 |
|
314 |
demo.launch(debug=True)
|
315 |
|
316 |
-
|
317 |
-
def replot(test_equation, num_points, noise_level, data_seed):
|
318 |
-
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
319 |
-
df = pd.DataFrame({"x": X["x"], "y": y})
|
320 |
-
return df
|
321 |
-
|
322 |
-
def replot_pareto(df, maxsize):
|
323 |
-
# Matplotlib log-log plot of loss vs complexity:
|
324 |
-
fig, ax = plt.subplots(figsize=(5, 5))
|
325 |
-
|
326 |
-
ax.set_xlabel('Complexity', fontsize=14)
|
327 |
-
ax.set_ylabel('Loss', fontsize=14)
|
328 |
-
if len(df) == 0 or 'Equation' not in df.columns:
|
329 |
-
return fig
|
330 |
-
|
331 |
-
ax.loglog(df['Complexity'], df['Loss'], marker='o', linestyle='-', color='b')
|
332 |
-
ax.set_xlim(1, maxsize + 1)
|
333 |
-
# Set ylim to next power of 2:
|
334 |
-
ytop = 2 ** (np.ceil(np.log2(df['Loss'].max())))
|
335 |
-
ybottom = 2 ** (np.floor(np.log2(df['Loss'].min() + 1e-20)))
|
336 |
-
ax.set_ylim(ybottom, ytop)
|
337 |
-
ax.grid(True, which="both", ls="--", linewidth=0.5)
|
338 |
-
fig.tight_layout()
|
339 |
-
ax.tick_params(axis='both', which='major', labelsize=12)
|
340 |
-
ax.tick_params(axis='both', which='minor', labelsize=10)
|
341 |
-
|
342 |
-
return fig
|
343 |
-
|
344 |
def replot_pareto(df, maxsize):
|
345 |
plt.rcParams['font.family'] = 'IBM Plex Mono'
|
346 |
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
@@ -375,5 +348,29 @@ def replot_pareto(df, maxsize):
|
|
375 |
|
376 |
return fig
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
if __name__ == "__main__":
|
379 |
main()
|
|
|
19 |
)
|
20 |
|
21 |
test_equations = [
|
22 |
+
"sin(2*x)/x + 0.1*x"
|
23 |
]
|
24 |
|
25 |
|
26 |
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
|
27 |
+
rstate = np.random.RandomState(data_seed)
|
28 |
+
x = rstate.uniform(-10, 10, num_points)
|
29 |
for (k, v) in {
|
30 |
"sin": "np.sin",
|
31 |
"cos": "np.cos",
|
|
|
36 |
}.items():
|
37 |
s = s.replace(k, v)
|
38 |
y = eval(s)
|
|
|
39 |
noise = rstate.normal(0, noise_level, y.shape)
|
40 |
y_noisy = y + noise
|
41 |
return pd.DataFrame({"x": x}), y_noisy
|
|
|
101 |
),
|
102 |
)
|
103 |
process.start()
|
104 |
+
last_yield_time = None
|
105 |
while process.is_alive():
|
106 |
if equation_file_bkup.exists():
|
107 |
try:
|
108 |
# First, copy the file to a the copy file
|
109 |
equation_file_copy = base / "hall_of_fame_copy.csv"
|
110 |
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
|
111 |
+
equations = pd.read_csv(equation_file_copy)
|
112 |
# Ensure it is pareto dominated, with more complex expressions
|
113 |
# having higher loss. Otherwise remove those rows.
|
114 |
# TODO: Not sure why this occurs; could be the result of a late copy?
|
115 |
+
equations.sort_values("Complexity", ascending=True, inplace=True)
|
116 |
+
equations.reset_index(inplace=True)
|
117 |
bad_idx = []
|
118 |
min_loss = None
|
119 |
+
for i in equations.index:
|
120 |
+
if min_loss is None or equations.loc[i, "Loss"] < min_loss:
|
121 |
+
min_loss = float(equations.loc[i, "Loss"])
|
122 |
else:
|
123 |
bad_idx.append(i)
|
124 |
+
equations.drop(index=bad_idx, inplace=True)
|
125 |
+
|
126 |
+
while last_yield_time is not None and time.time() - last_yield_time < 1:
|
127 |
+
time.sleep(0.1)
|
128 |
+
|
129 |
+
yield equations[["Complexity", "Loss", "Equation"]]
|
130 |
+
|
131 |
+
last_yield_time = time.time()
|
132 |
except pd.errors.EmptyDataError:
|
133 |
pass
|
134 |
+
|
135 |
|
136 |
process.join()
|
137 |
|
|
|
170 |
def _data_layout():
|
171 |
with gr.Tab("Example Data"):
|
172 |
# Plot of the example data:
|
173 |
+
example_plot = gr.Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
test_equation = gr.Radio(
|
175 |
test_equations, value=test_equations[0], label="Test Equation"
|
176 |
)
|
177 |
num_points = gr.Slider(
|
178 |
minimum=10,
|
179 |
maximum=1000,
|
180 |
+
value=200,
|
181 |
label="Number of Data Points",
|
182 |
step=1,
|
183 |
)
|
184 |
+
noise_level = gr.Slider(minimum=0, maximum=1, value=0.05, label="Noise Level")
|
185 |
data_seed = gr.Number(value=0, label="Random Seed")
|
186 |
with gr.Tab("Upload Data"):
|
187 |
file_input = gr.File(label="Upload a CSV File")
|
188 |
gr.Markdown(
|
189 |
+
"The rightmost column of your CSV file be used as the target variable."
|
190 |
)
|
191 |
|
192 |
return dict(
|
|
|
218 |
"tan",
|
219 |
],
|
220 |
label="Unary Operators",
|
221 |
+
value=["sin"],
|
222 |
)
|
223 |
niterations = gr.Slider(
|
224 |
minimum=1,
|
|
|
303 |
for eqn_component in eqn_components:
|
304 |
eqn_component.change(replot, eqn_components, blocks["example_plot"])
|
305 |
|
306 |
+
|
307 |
# Update plot when dataframe is updated:
|
308 |
blocks["df"].change(
|
309 |
replot_pareto,
|
310 |
inputs=[blocks["df"], blocks["maxsize"]],
|
311 |
outputs=[blocks["pareto"]],
|
312 |
)
|
313 |
+
demo.load(replot, eqn_components, blocks["example_plot"])
|
314 |
|
315 |
demo.launch(debug=True)
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
def replot_pareto(df, maxsize):
|
318 |
plt.rcParams['font.family'] = 'IBM Plex Mono'
|
319 |
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
|
|
348 |
|
349 |
return fig
|
350 |
|
351 |
+
def replot(test_equation, num_points, noise_level, data_seed):
|
352 |
+
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
353 |
+
x = X["x"]
|
354 |
+
|
355 |
+
plt.rcParams['font.family'] = 'IBM Plex Mono'
|
356 |
+
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
357 |
+
|
358 |
+
ax.scatter(x, y, alpha=0.7, edgecolors='w', s=50)
|
359 |
+
|
360 |
+
ax.grid(True, which="major", linestyle='--', linewidth=0.5, color='gray', alpha=0.7)
|
361 |
+
ax.grid(True, which="minor", linestyle=':', linewidth=0.5, color='gray', alpha=0.5)
|
362 |
+
ax.spines['top'].set_visible(False)
|
363 |
+
ax.spines['right'].set_visible(False)
|
364 |
+
ax.spines['bottom'].set_color('gray')
|
365 |
+
ax.spines['left'].set_color('gray')
|
366 |
+
ax.tick_params(axis='both', which='major', labelsize=12, direction='out', length=6)
|
367 |
+
ax.tick_params(axis='both', which='minor', labelsize=10, direction='out', length=4)
|
368 |
+
ax.set_xlabel("x")
|
369 |
+
ax.set_ylabel("y")
|
370 |
+
|
371 |
+
fig.tight_layout()
|
372 |
+
return fig
|
373 |
+
|
374 |
+
|
375 |
if __name__ == "__main__":
|
376 |
main()
|