MilesCranmer commited on
Commit
a369299
·
1 Parent(s): b03c020

Attempting to merge populations

Browse files
Files changed (3) hide show
  1. README.md +5 -0
  2. eureqa.jl +6 -0
  3. paralleleureqa.jl +22 -10
README.md CHANGED
@@ -20,3 +20,8 @@ const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3]) .+ 5.0;
20
 
21
  The default number of processes is 10; this is set with
22
  `addprocs(10)` in `paralleleureqa.jl`.
 
 
 
 
 
 
20
 
21
  The default number of processes is 10; this is set with
22
  `addprocs(10)` in `paralleleureqa.jl`.
23
+
24
+ ### Hyperparameters
25
+
26
+ Turn on annealing by setting the following in `paralleleureqa.jl`
27
+ `const annealing = true`
eureqa.jl CHANGED
@@ -386,6 +386,12 @@ function bestOfSample(pop::Population)::PopMember
386
  return sample.members[best_idx]
387
  end
388
 
 
 
 
 
 
 
389
  # Mutate the best sampled member of the population
390
  function iterateSample(pop::Population, T::Float64)::PopMember
391
  allstar = bestOfSample(pop)
 
386
  return sample.members[best_idx]
387
  end
388
 
389
+ # Return best 10 examples
390
+ function bestSubPop(pop::Population)::Population
391
+ best_idx = sortperm([pop.members[member].score for member=1:pop.n])
392
+ return Population(pop.members[best_idx[1:10]])
393
+ end
394
+
395
  # Mutate the best sampled member of the population
396
  function iterateSample(pop::Population, T::Float64)::PopMember
397
  allstar = bestOfSample(pop)
paralleleureqa.jl CHANGED
@@ -1,24 +1,36 @@
1
  using Distributed
2
- addprocs(10)
 
3
  @everywhere include("eureqa.jl")
4
 
5
  println("Lets try to learn (x2^2 + cos(x3) + 5) using regularized evolution from scratch")
6
  const npop = 100
7
- const nthreads = 10
8
  const annealing = false
 
9
  bestScore = Inf
 
 
10
  allPops = [Population(npop, 3) for i=1:nthreads]
11
 
12
- @everywhere f = (pop,)->run(pop, 10000, annealing)
13
- allPops = pmap(f, allPops)
 
 
 
 
 
14
 
15
- for pop in allPops
16
- bestCurScoreIdx = argmin([pop.members[member].score for member=1:pop.n])
17
- bestCurScore = pop.members[bestCurScoreIdx].score
18
- if bestCurScore < bestScore
19
- global bestScore = bestCurScore
20
- println(bestScore, " is the score for ", stringTree(pop.members[bestCurScoreIdx].tree))
 
 
 
21
  end
 
22
  end
23
 
24
 
 
1
  using Distributed
2
+ const nthreads = 10
3
+ addprocs(nthreads)
4
  @everywhere include("eureqa.jl")
5
 
6
  println("Lets try to learn (x2^2 + cos(x3) + 5) using regularized evolution from scratch")
7
  const npop = 100
 
8
  const annealing = false
9
+ const niterations = 10
10
  bestScore = Inf
11
+
12
+ # Generate random initial populations
13
  allPops = [Population(npop, 3) for i=1:nthreads]
14
 
15
+ # Create a mapping for running the algorithm on all processes
16
+ @everywhere f = (pop,)->run(pop, 1000, annealing)
17
+
18
+ # Do niterations cycles
19
+ for i=1:niterations
20
+ # Map it over our workers
21
+ global allPops = deepcopy(pmap(f, allPops))
22
 
23
+ # Get best 10 models for each processes
24
+ bestPops = Population(vcat(map(((pop,)->bestSubPop(pop).members), allPops)...))
25
+ for pop in bestPops
26
+ bestCurScoreIdx = argmin([pop.members[member].score for member=1:pop.n])
27
+ bestCurScore = pop.members[bestCurScoreIdx].score
28
+ if bestCurScore < bestScore
29
+ global bestScore = bestCurScore
30
+ println(bestScore, " is the score for ", stringTree(pop.members[bestCurScoreIdx].tree))
31
+ end
32
  end
33
+ exit()
34
  end
35
 
36