MilesCranmer commited on
Commit
a512af0
·
unverified ·
2 Parent(s): 57dd7d2 976f8d8

Merge pull request #425 from MilesCranmer/pre-commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .github/ISSUE_TEMPLATE/feature_request.yml +0 -1
  2. .github/workflows/CI.yml +3 -3
  3. .github/workflows/CI_Windows.yml +1 -1
  4. .github/workflows/CI_conda_forge.yml +1 -1
  5. .github/workflows/CI_docker_large_nightly.yml +2 -2
  6. .github/workflows/CI_large_nightly.yml +1 -1
  7. .github/workflows/CI_mac.yml +1 -1
  8. .github/workflows/codeql-analysis.yml +3 -3
  9. .github/workflows/docker_deploy.yml +1 -1
  10. .github/workflows/docs.yml +2 -2
  11. .github/workflows/update_backend.yml +1 -1
  12. .pre-commit-config.yaml +31 -0
  13. CONTRIBUTORS.md +1 -1
  14. README.md +2 -2
  15. benchmarks/README.md +1 -1
  16. benchmarks/hyperparamopt.py +6 -4
  17. benchmarks/print_best_model.py +4 -6
  18. benchmarks/space.py +1 -1
  19. datasets/FeynmanEquations.csv +1 -1
  20. docs/.gitignore +1 -1
  21. docs/_api.md +1 -3
  22. docs/assets/pysr_logo.svg +1 -1
  23. docs/assets/pysr_logo_reduced.svg +1 -1
  24. docs/backend.md +2 -2
  25. docs/gen_param_docs.py +6 -5
  26. docs/generate_papers.py +3 -2
  27. docs/operators.md +0 -2
  28. docs/options.md +1 -1
  29. docs/papers.yml +0 -1
  30. docs/requirements.txt +1 -1
  31. docs/stylesheets/extra.css +1 -1
  32. docs/stylesheets/papers_header.txt +0 -1
  33. docs/tuning.md +2 -2
  34. environment.yml +1 -1
  35. examples/pysr_demo.ipynb +0 -0
  36. mkdocs.yml +1 -1
  37. pyproject.toml +2 -0
  38. pysr/__init__.py +20 -11
  39. pysr/_cli/main.py +1 -0
  40. pysr/export_jax.py +0 -3
  41. pysr/export_latex.py +3 -3
  42. pysr/export_numpy.py +2 -1
  43. pysr/export_torch.py +1 -0
  44. pysr/feynman_problems.py +6 -3
  45. pysr/julia_helpers.py +4 -3
  46. pysr/sr.py +21 -24
  47. pysr/test/__init__.py +3 -1
  48. pysr/test/test.py +14 -14
  49. pysr/test/test_cli.py +2 -0
  50. pysr/test/test_env.py +1 -1
.github/ISSUE_TEMPLATE/feature_request.yml CHANGED
@@ -19,4 +19,3 @@ body:
19
  attributes:
20
  value: |
21
  Be sure to check out the [PySR forums](https://github.com/MilesCranmer/PySR/discussions) to chat with other users about PySR use-cases!
22
-
 
19
  attributes:
20
  value: |
21
  Be sure to check out the [PySR forums](https://github.com/MilesCranmer/PySR/discussions) to chat with other users about PySR use-cases!
 
.github/workflows/CI.yml CHANGED
@@ -32,7 +32,7 @@ jobs:
32
  julia-version: ['1.9']
33
  python-version: ['3.10']
34
  os: [ubuntu-latest]
35
-
36
  steps:
37
  - uses: actions/checkout@v3
38
  - name: "Set up Julia"
@@ -96,7 +96,7 @@ jobs:
96
  matrix:
97
  python-version: ['3.9']
98
  os: ['ubuntu-latest']
99
-
100
  steps:
101
  - uses: actions/checkout@v3
102
  - name: "Cache conda"
@@ -129,7 +129,7 @@ jobs:
129
 
130
  coveralls:
131
  name: Indicate completion to coveralls.io
132
- needs:
133
  - test
134
  runs-on: ubuntu-latest
135
  defaults:
 
32
  julia-version: ['1.9']
33
  python-version: ['3.10']
34
  os: [ubuntu-latest]
35
+
36
  steps:
37
  - uses: actions/checkout@v3
38
  - name: "Set up Julia"
 
96
  matrix:
97
  python-version: ['3.9']
98
  os: ['ubuntu-latest']
99
+
100
  steps:
101
  - uses: actions/checkout@v3
102
  - name: "Cache conda"
 
129
 
130
  coveralls:
131
  name: Indicate completion to coveralls.io
132
+ needs:
133
  - test
134
  runs-on: ubuntu-latest
135
  defaults:
.github/workflows/CI_Windows.yml CHANGED
@@ -32,7 +32,7 @@ jobs:
32
  julia-version: ['1.9']
33
  python-version: ['3.10']
34
  os: [windows-latest]
35
-
36
  steps:
37
  - uses: actions/checkout@v3
38
  - name: "Set up Julia"
 
32
  julia-version: ['1.9']
33
  python-version: ['3.10']
34
  os: [windows-latest]
35
+
36
  steps:
37
  - uses: actions/checkout@v3
38
  - name: "Set up Julia"
.github/workflows/CI_conda_forge.yml CHANGED
@@ -23,7 +23,7 @@ jobs:
23
  python-version: ['3.8', '3.9', '3.10', '3.11']
24
  os: ['ubuntu-latest', 'macos-latest']
25
  use-mamba: [true, false]
26
-
27
  steps:
28
  - name: "Set up Conda"
29
  uses: conda-incubator/setup-miniconda@v2
 
23
  python-version: ['3.8', '3.9', '3.10', '3.11']
24
  os: ['ubuntu-latest', 'macos-latest']
25
  use-mamba: [true, false]
26
+
27
  steps:
28
  - name: "Set up Conda"
29
  uses: conda-incubator/setup-miniconda@v2
.github/workflows/CI_docker_large_nightly.yml CHANGED
@@ -22,8 +22,8 @@ jobs:
22
  python-version: ['3.10']
23
  os: [ubuntu-latest]
24
  arch: ['linux/amd64', 'linux/arm64']
25
-
26
-
27
  steps:
28
  - uses: actions/checkout@v3
29
  - name: Set up QEMU
 
22
  python-version: ['3.10']
23
  os: [ubuntu-latest]
24
  arch: ['linux/amd64', 'linux/arm64']
25
+
26
+
27
  steps:
28
  - uses: actions/checkout@v3
29
  - name: Set up QEMU
.github/workflows/CI_large_nightly.yml CHANGED
@@ -26,7 +26,7 @@ jobs:
26
  julia-version: ['1.6', '1.8', '1.9']
27
  python-version: ['3.7', '3.8', '3.9', '3.10', '3.11']
28
  os: [ubuntu-latest, macos-latest, windows-latest]
29
-
30
  steps:
31
  - uses: actions/checkout@v3
32
  - name: "Set up Julia"
 
26
  julia-version: ['1.6', '1.8', '1.9']
27
  python-version: ['3.7', '3.8', '3.9', '3.10', '3.11']
28
  os: [ubuntu-latest, macos-latest, windows-latest]
29
+
30
  steps:
31
  - uses: actions/checkout@v3
32
  - name: "Set up Julia"
.github/workflows/CI_mac.yml CHANGED
@@ -32,7 +32,7 @@ jobs:
32
  julia-version: ['1.9']
33
  python-version: ['3.10']
34
  os: [macos-latest]
35
-
36
  steps:
37
  - uses: actions/checkout@v3
38
  - name: "Set up Julia"
 
32
  julia-version: ['1.9']
33
  python-version: ['3.10']
34
  os: [macos-latest]
35
+
36
  steps:
37
  - uses: actions/checkout@v3
38
  - name: "Set up Julia"
.github/workflows/codeql-analysis.yml CHANGED
@@ -37,11 +37,11 @@ jobs:
37
  # If you wish to specify custom queries, you can do so here or in a config file.
38
  # By default, queries listed here will override any specified in a config file.
39
  # Prefix the list here with "+" to use these queries and those in the config file.
40
-
41
  # Details on CodeQL's query packs refer to : https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
42
  # queries: security-extended,security-and-quality
43
 
44
-
45
  # Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
46
  # If this step fails, then you should remove it and run the build manually (see below)
47
  - name: Autobuild
@@ -50,7 +50,7 @@ jobs:
50
  # ℹ️ Command-line programs to run using the OS shell.
51
  # 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
52
 
53
- # If the Autobuild fails above, remove it and uncomment the following three lines.
54
  # modify them (or add more) to build your code if your project, please refer to the EXAMPLE below for guidance.
55
 
56
  # - run: |
 
37
  # If you wish to specify custom queries, you can do so here or in a config file.
38
  # By default, queries listed here will override any specified in a config file.
39
  # Prefix the list here with "+" to use these queries and those in the config file.
40
+
41
  # Details on CodeQL's query packs refer to : https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
42
  # queries: security-extended,security-and-quality
43
 
44
+
45
  # Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
46
  # If this step fails, then you should remove it and run the build manually (see below)
47
  - name: Autobuild
 
50
  # ℹ️ Command-line programs to run using the OS shell.
51
  # 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
52
 
53
+ # If the Autobuild fails above, remove it and uncomment the following three lines.
54
  # modify them (or add more) to build your code if your project, please refer to the EXAMPLE below for guidance.
55
 
56
  # - run: |
.github/workflows/docker_deploy.yml CHANGED
@@ -9,7 +9,7 @@ on:
9
  tags:
10
  - "v*.*.*"
11
  workflow_dispatch:
12
-
13
 
14
  jobs:
15
  docker:
 
9
  tags:
10
  - "v*.*.*"
11
  workflow_dispatch:
12
+
13
 
14
  jobs:
15
  docker:
.github/workflows/docs.yml CHANGED
@@ -18,7 +18,7 @@ jobs:
18
  defaults:
19
  run:
20
  shell: bash
21
-
22
  steps:
23
  - uses: actions/checkout@v3
24
  - name: "Set up Python"
@@ -33,4 +33,4 @@ jobs:
33
  - name: "Build API docs"
34
  run: cd docs && ./gen_docs.sh
35
  - name: "Deploy documentation"
36
- run: mkdocs gh-deploy --force
 
18
  defaults:
19
  run:
20
  shell: bash
21
+
22
  steps:
23
  - uses: actions/checkout@v3
24
  - name: "Set up Python"
 
33
  - name: "Build API docs"
34
  run: cd docs && ./gen_docs.sh
35
  - name: "Deploy documentation"
36
+ run: mkdocs gh-deploy --force
.github/workflows/update_backend.yml CHANGED
@@ -48,7 +48,7 @@ jobs:
48
  CURRENT_PYSR_PATCH_VERSION=$(python -c 'import pysr; print(pysr.version.__version__.split(".")[-1], end="")' 2>/dev/null)
49
  NEW_PYSR_PATCH_VERSION=$((CURRENT_PYSR_PATCH_VERSION + 1))
50
  sed -i "s/^__version__ = .*/__version__ = \"$(python -c 'import pysr; print(".".join(pysr.version.__version__.split(".")[:-1]), end="")' 2>/dev/null).${NEW_PYSR_PATCH_VERSION}\"/" pysr/version.py
51
-
52
  # Set SymbolicRegression.jl version:
53
  sed -i "s/^__symbolic_regression_jl_version__ = .*/__symbolic_regression_jl_version__ = \"${{ steps.get-latest.outputs.version }}\"/" pysr/version.py
54
 
 
48
  CURRENT_PYSR_PATCH_VERSION=$(python -c 'import pysr; print(pysr.version.__version__.split(".")[-1], end="")' 2>/dev/null)
49
  NEW_PYSR_PATCH_VERSION=$((CURRENT_PYSR_PATCH_VERSION + 1))
50
  sed -i "s/^__version__ = .*/__version__ = \"$(python -c 'import pysr; print(".".join(pysr.version.__version__.split(".")[:-1]), end="")' 2>/dev/null).${NEW_PYSR_PATCH_VERSION}\"/" pysr/version.py
51
+
52
  # Set SymbolicRegression.jl version:
53
  sed -i "s/^__symbolic_regression_jl_version__ = .*/__symbolic_regression_jl_version__ = \"${{ steps.get-latest.outputs.version }}\"/" pysr/version.py
54
 
.pre-commit-config.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ # General linting
3
+ - repo: https://github.com/pre-commit/pre-commit-hooks
4
+ rev: v3.2.0
5
+ hooks:
6
+ - id: trailing-whitespace
7
+ - id: end-of-file-fixer
8
+ - id: check-yaml
9
+ - id: check-added-large-files
10
+ # General formatting
11
+ - repo: https://github.com/psf/black
12
+ rev: 23.3.0
13
+ hooks:
14
+ - id: black
15
+ - id: black-jupyter
16
+ # Stripping notebooks
17
+ - repo: https://github.com/kynan/nbstripout
18
+ rev: 0.6.1
19
+ hooks:
20
+ - id: nbstripout
21
+ # Unused imports
22
+ - repo: https://github.com/hadialqattan/pycln
23
+ rev: "v2.2.2"
24
+ hooks:
25
+ - id: pycln
26
+ # Sorted imports
27
+ - repo: https://github.com/PyCQA/isort
28
+ rev: "5.12.0"
29
+ hooks:
30
+ - id: isort
31
+ additional_dependencies: [toml]
CONTRIBUTORS.md CHANGED
@@ -121,4 +121,4 @@ Thanks for being part of the PySR community!
121
  <!-- prettier-ignore-end -->
122
 
123
  <!-- ALL-CONTRIBUTORS-LIST:END -->
124
- </div>
 
121
  <!-- prettier-ignore-end -->
122
 
123
  <!-- ALL-CONTRIBUTORS-LIST:END -->
124
+ </div>
README.md CHANGED
@@ -155,7 +155,7 @@ The PySR build in conda includes all required dependencies, so you can install i
155
  conda install -c conda-forge pysr
156
  ```
157
 
158
- from within your target conda environment.
159
 
160
  However, note that the conda install does not support precompilation of Julia libraries, so the
161
  start time may be slightly slower as the JIT-compilation will be running.
@@ -305,7 +305,7 @@ model = PySRRegressor(
305
  # ^ 2 populations per core, so one is always running.
306
  population_size=50,
307
  # ^ Slightly larger populations, for greater diversity.
308
- ncyclesperiteration=500,
309
  # ^ Generations between migrations.
310
  niterations=10000000, # Run forever
311
  early_stop_condition=(
 
155
  conda install -c conda-forge pysr
156
  ```
157
 
158
+ from within your target conda environment.
159
 
160
  However, note that the conda install does not support precompilation of Julia libraries, so the
161
  start time may be slightly slower as the JIT-compilation will be running.
 
305
  # ^ 2 populations per core, so one is always running.
306
  population_size=50,
307
  # ^ Slightly larger populations, for greater diversity.
308
+ ncyclesperiteration=500,
309
  # ^ Generations between migrations.
310
  niterations=10000000, # Run forever
311
  early_stop_condition=(
benchmarks/README.md CHANGED
@@ -21,7 +21,7 @@ v0.3.6 | 25900
21
  v0.3.7 | 26600
22
  v0.3.8 | 7470
23
  v0.3.9 | 6760
24
- v0.3.10 |
25
  v0.3.11 | 19500
26
  v0.3.12 | 19000
27
  v0.3.13 | 15200
 
21
  v0.3.7 | 26600
22
  v0.3.8 | 7470
23
  v0.3.9 | 6760
24
+ v0.3.10 |
25
  v0.3.11 | 19500
26
  v0.3.12 | 19000
27
  v0.3.13 | 15200
benchmarks/hyperparamopt.py CHANGED
@@ -1,13 +1,15 @@
1
  """Start a hyperoptimization from a single node"""
2
- import sys
3
- import numpy as np
4
  import pickle as pkl
5
- from pysr import PySRRegressor
 
6
  import hyperopt
7
- from hyperopt import hp, fmin, tpe, Trials
 
8
  from hyperopt.fmin import generate_trials_to_calculate
9
  from space import *
10
 
 
 
11
  # Change the following code to your file
12
  ################################################################################
13
  TRIALS_FOLDER = "trials2"
 
1
  """Start a hyperoptimization from a single node"""
 
 
2
  import pickle as pkl
3
+ import sys
4
+
5
  import hyperopt
6
+ import numpy as np
7
+ from hyperopt import Trials, fmin, hp, tpe
8
  from hyperopt.fmin import generate_trials_to_calculate
9
  from space import *
10
 
11
+ from pysr import PySRRegressor
12
+
13
  # Change the following code to your file
14
  ################################################################################
15
  TRIALS_FOLDER = "trials2"
benchmarks/print_best_model.py CHANGED
@@ -1,12 +1,11 @@
1
  """Print the best model parameters and loss"""
2
- import sys
3
- import numpy as np
4
  import pickle as pkl
5
- import hyperopt
6
- from hyperopt import hp, fmin, tpe, Trials
7
- from space import space
8
  from pprint import PrettyPrinter
9
 
 
 
 
 
10
 
11
  # Change the following code to your file
12
  ################################################################################
@@ -51,7 +50,6 @@ import glob
51
  path = TRIALS_FOLDER + "/*.pkl"
52
  files = 0
53
  for fname in glob.glob(path):
54
-
55
  trials_obj = pkl.load(open(fname, "rb"))
56
  n_trials = trials_obj["n"]
57
  trials_obj = trials_obj["trials"]
 
1
  """Print the best model parameters and loss"""
 
 
2
  import pickle as pkl
 
 
 
3
  from pprint import PrettyPrinter
4
 
5
+ import hyperopt
6
+ import numpy as np
7
+ from hyperopt import Trials, fmin, hp, tpe
8
+ from space import space
9
 
10
  # Change the following code to your file
11
  ################################################################################
 
50
  path = TRIALS_FOLDER + "/*.pkl"
51
  files = 0
52
  for fname in glob.glob(path):
 
53
  trials_obj = pkl.load(open(fname, "rb"))
54
  n_trials = trials_obj["n"]
55
  trials_obj = trials_obj["trials"]
benchmarks/space.py CHANGED
@@ -1,5 +1,5 @@
1
  import numpy as np
2
- from hyperopt import hp, fmin, tpe, Trials
3
 
4
  binary_operators = ["*", "/", "+", "-"]
5
  unary_operators = ["sin", "cos", "exp", "log"]
 
1
  import numpy as np
2
+ from hyperopt import Trials, fmin, hp, tpe
3
 
4
  binary_operators = ["*", "/", "+", "-"]
5
  unary_operators = ["sin", "cos", "exp", "log"]
datasets/FeynmanEquations.csv CHANGED
@@ -98,4 +98,4 @@ III.15.14,10,96,m,(h/(2*pi))**2/(2*E_n*d**2),3,h,1,5,E_n,1,5,d,1,5,,,,,,,,,,,,,,
98
  III.15.27,10,97,k,2*pi*alpha/(n*d),3,alpha,1,5,n,1,5,d,1,5,,,,,,,,,,,,,,,,,,,,,
99
  III.17.37,10,98,f,beta*(1+alpha*cos(theta)),3,beta,1,5,alpha,1,5,theta,1,5,,,,,,,,,,,,,,,,,,,,,
100
  III.19.51,10,99,E_n,-m*q**4/(2*(4*pi*epsilon)**2*(h/(2*pi))**2)*(1/n**2),5,m,1,5,q,1,5,h,1,5,n,1,5,epsilon,1,5,,,,,,,,,,,,,,,
101
- III.21.20,10,100,j,-rho_c_0*q*A_vec/m,4,rho_c_0,1,5,q,1,5,A_vec,1,5,m,1,5,,,,,,,,,,,,,,,,,,
 
98
  III.15.27,10,97,k,2*pi*alpha/(n*d),3,alpha,1,5,n,1,5,d,1,5,,,,,,,,,,,,,,,,,,,,,
99
  III.17.37,10,98,f,beta*(1+alpha*cos(theta)),3,beta,1,5,alpha,1,5,theta,1,5,,,,,,,,,,,,,,,,,,,,,
100
  III.19.51,10,99,E_n,-m*q**4/(2*(4*pi*epsilon)**2*(h/(2*pi))**2)*(1/n**2),5,m,1,5,q,1,5,h,1,5,n,1,5,epsilon,1,5,,,,,,,,,,,,,,,
101
+ III.21.20,10,100,j,-rho_c_0*q*A_vec/m,4,rho_c_0,1,5,q,1,5,A_vec,1,5,m,1,5,,,,,,,,,,,,,,,,,,
docs/.gitignore CHANGED
@@ -1,4 +1,4 @@
1
  build
2
  api.md
3
  index.md.bak
4
- papers.md
 
1
  build
2
  api.md
3
  index.md.bak
4
+ papers.md
docs/_api.md CHANGED
@@ -6,7 +6,7 @@ Let's look at them below.
6
  PARAMSKEY
7
 
8
  ## PySRRegressor Functions
9
-
10
  ::: pysr.PySRRegressor.fit
11
  options:
12
  show_root_heading: true
@@ -60,5 +60,3 @@ PARAMSKEY
60
  show_root_heading: true
61
  heading_level: 3
62
  show_root_full_path: false
63
-
64
-
 
6
  PARAMSKEY
7
 
8
  ## PySRRegressor Functions
9
+
10
  ::: pysr.PySRRegressor.fit
11
  options:
12
  show_root_heading: true
 
60
  show_root_heading: true
61
  heading_level: 3
62
  show_root_full_path: false
 
 
docs/assets/pysr_logo.svg CHANGED
docs/assets/pysr_logo_reduced.svg CHANGED
docs/backend.md CHANGED
@@ -12,7 +12,7 @@ Generally you can do this as follows:
12
  git clone https://github.com/MilesCranmer/SymbolicRegression.jl
13
  ```
14
  2. Edit the source code in `src/` to your requirements:
15
- - The documentation for the backend is given [here](https://astroautomata.com/SymbolicRegression.jl/dev/).
16
  - Throughout the package, you will often see template functions which typically use a symbol `T` (such as in the string `where {T<:Real}`). Here, `T` is simply the datatype of the input data and stored constants, such as `Float32` or `Float64`. Writing functions in this way lets us write functions generic to types, while still having access to the specific type specified at compilation time.
17
  - Expressions are stored as binary trees, using the `Node{T}` type, described [here](https://astroautomata.com/SymbolicRegression.jl/dev/types/#SymbolicRegression.CoreModule.EquationModule.Node).
18
  - Parts of the code which are typically edited by users include:
@@ -26,4 +26,4 @@ git clone https://github.com/MilesCranmer/SymbolicRegression.jl
26
 
27
  If you get comfortable enough with the backend, you might consider using the Julia package directly: the API is given on the [SymbolicRegression.jl documentation](https://astroautomata.com/SymbolicRegression.jl/dev/).
28
 
29
- If you make a change that you think could be useful to other users, don't hesitate to open a pull request on either the PySR or SymbolicRegression.jl repositories! Contributions are very appreciated.
 
12
  git clone https://github.com/MilesCranmer/SymbolicRegression.jl
13
  ```
14
  2. Edit the source code in `src/` to your requirements:
15
+ - The documentation for the backend is given [here](https://astroautomata.com/SymbolicRegression.jl/dev/).
16
  - Throughout the package, you will often see template functions which typically use a symbol `T` (such as in the string `where {T<:Real}`). Here, `T` is simply the datatype of the input data and stored constants, such as `Float32` or `Float64`. Writing functions in this way lets us write functions generic to types, while still having access to the specific type specified at compilation time.
17
  - Expressions are stored as binary trees, using the `Node{T}` type, described [here](https://astroautomata.com/SymbolicRegression.jl/dev/types/#SymbolicRegression.CoreModule.EquationModule.Node).
18
  - Parts of the code which are typically edited by users include:
 
26
 
27
  If you get comfortable enough with the backend, you might consider using the Julia package directly: the API is given on the [SymbolicRegression.jl documentation](https://astroautomata.com/SymbolicRegression.jl/dev/).
28
 
29
+ If you make a change that you think could be useful to other users, don't hesitate to open a pull request on either the PySR or SymbolicRegression.jl repositories! Contributions are very appreciated.
docs/gen_param_docs.py CHANGED
@@ -1,13 +1,14 @@
1
  # Load YAML file param_groupings.yml:
2
- from pathlib import Path
3
- from yaml import safe_load
4
  import sys
5
 
 
 
 
6
  sys.path.append("..")
 
 
7
  from pysr import PySRRegressor
8
- import pysr
9
- import re
10
- from docstring_parser import parse
11
 
12
  found_params = []
13
 
 
1
  # Load YAML file param_groupings.yml:
2
+ import re
 
3
  import sys
4
 
5
+ from docstring_parser import parse
6
+ from yaml import safe_load
7
+
8
  sys.path.append("..")
9
+
10
+
11
  from pysr import PySRRegressor
 
 
 
12
 
13
  found_params = []
14
 
docs/generate_papers.py CHANGED
@@ -1,7 +1,8 @@
1
  """This script generates the papers.md file from the papers.yml file."""
2
- import yaml
3
  from pathlib import Path
4
 
 
 
5
  data_file = "papers.yml"
6
  papers_header = Path("stylesheets") / "papers_header.txt"
7
  output_file = "papers.md"
@@ -49,7 +50,7 @@ with open(output_file, "w") as f:
49
 
50
  <center>
51
  {authors}
52
-
53
  <small>{affiliations}</small>
54
  </center>
55
 
 
1
  """This script generates the papers.md file from the papers.yml file."""
 
2
  from pathlib import Path
3
 
4
+ import yaml
5
+
6
  data_file = "papers.yml"
7
  papers_header = Path("stylesheets") / "papers_header.txt"
8
  output_file = "papers.md"
 
50
 
51
  <center>
52
  {authors}
53
+
54
  <small>{affiliations}</small>
55
  </center>
56
 
docs/operators.md CHANGED
@@ -64,5 +64,3 @@ instead of `1.5e3`, if you write any constant numbers.
64
  Your operator should work with the entire real line (you can use
65
  abs(x) for operators requiring positive input - see `log_abs`); otherwise
66
  the search code will experience domain errors.
67
-
68
-
 
64
  Your operator should work with the entire real line (you can use
65
  abs(x) for operators requiring positive input - see `log_abs`); otherwise
66
  the search code will experience domain errors.
 
 
docs/options.md CHANGED
@@ -265,7 +265,7 @@ PySRRegressor(..., loss="loss(x, y) = abs(x * y)")
265
  With weights:
266
 
267
  ```python
268
- model = PySRRegressor(..., loss="myloss(x, y, w) = w * abs(x - y)")
269
  model.fit(..., weights=weights)
270
  ```
271
 
 
265
  With weights:
266
 
267
  ```python
268
+ model = PySRRegressor(..., loss="myloss(x, y, w) = w * abs(x - y)")
269
  model.fit(..., weights=weights)
270
  ```
271
 
docs/papers.yml CHANGED
@@ -151,7 +151,6 @@ papers:
151
  abstract: "We present an approach for using machine learning to automatically discover the governing equations and hidden properties of real physical systems from observations. We train a \"graph neural network\" to simulate the dynamics of our solar system's Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to discover an analytical expression for the force law implicitly learned by the neural network, which our results showed is equivalent to Newton's law of gravitation. The key assumptions that were required were translational and rotational equivariance, and Newton's second and third laws of motion. Our approach correctly discovered the form of the symbolic force law. Furthermore, our approach did not require any assumptions about the masses of planets and moons or physical constants. They, too, were accurately inferred through our methods. Though, of course, the classical law of gravitation has been known since Isaac Newton, our result serves as a validation that our method can discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery."
152
  image: rediscovering_gravity.png
153
  date: 2022-02-04
154
- link: https://arxiv.org/abs/2202.02306
155
  - title: (Thesis) On Neural Differential Equations - Section 6.1
156
  authors:
157
  - Patrick Kidger (1)
 
151
  abstract: "We present an approach for using machine learning to automatically discover the governing equations and hidden properties of real physical systems from observations. We train a \"graph neural network\" to simulate the dynamics of our solar system's Sun, planets, and large moons from 30 years of trajectory data. We then use symbolic regression to discover an analytical expression for the force law implicitly learned by the neural network, which our results showed is equivalent to Newton's law of gravitation. The key assumptions that were required were translational and rotational equivariance, and Newton's second and third laws of motion. Our approach correctly discovered the form of the symbolic force law. Furthermore, our approach did not require any assumptions about the masses of planets and moons or physical constants. They, too, were accurately inferred through our methods. Though, of course, the classical law of gravitation has been known since Isaac Newton, our result serves as a validation that our method can discover unknown laws and hidden properties from observed data. More broadly this work represents a key step toward realizing the potential of machine learning for accelerating scientific discovery."
152
  image: rediscovering_gravity.png
153
  date: 2022-02-04
 
154
  - title: (Thesis) On Neural Differential Equations - Section 6.1
155
  authors:
156
  - Patrick Kidger (1)
docs/requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
  mkdocs-material
2
  mkdocs-autorefs
3
  mkdocstrings[python]
4
- docstring_parser
 
1
  mkdocs-material
2
  mkdocs-autorefs
3
  mkdocstrings[python]
4
+ docstring_parser
docs/stylesheets/extra.css CHANGED
@@ -2,4 +2,4 @@
2
  --md-primary-fg-color: #C13245;
3
  --md-primary-fg-color--light: #D35364;
4
  --md-primary-fg-color--dark: #982736;
5
- }
 
2
  --md-primary-fg-color: #C13245;
3
  --md-primary-fg-color--light: #D35364;
4
  --md-primary-fg-color--dark: #982736;
5
+ }
docs/stylesheets/papers_header.txt CHANGED
@@ -6,4 +6,3 @@ These are sorted by the date of release, with most recent papers at the top.
6
 
7
  If you have used PySR in your research,
8
  please submit a pull request to add your paper to [this file](https://github.com/MilesCranmer/PySR/blob/master/docs/papers.yml).
9
-
 
6
 
7
  If you have used PySR in your research,
8
  please submit a pull request to add your paper to [this file](https://github.com/MilesCranmer/PySR/blob/master/docs/papers.yml).
 
docs/tuning.md CHANGED
@@ -17,7 +17,7 @@ I run from IPython (Jupyter Notebooks don't work as well[^1]) on the head node o
17
  5. Set `ncyclesperiteration` to maybe `5000` or so, until the head node occupation is under `10%`.
18
  6. Set `constraints` and `nested_constraints` as strict as possible. These can help quite a bit with exploration. Typically, if I am using `pow`, I would set `constraints={"pow": (9, 1)}`, so that power laws can only have a variable or constant as their exponent. If I am using `sin` and `cos`, I also like to set `nested_constraints={"sin": {"sin": 0, "cos": 0}, "cos": {"sin": 0, "cos": 0}}`, so that sin and cos can't be nested, which seems to happen frequently. (Although in practice I would just use `sin`, since the search could always add a phase offset!)
19
  7. Set `maxsize` a bit larger than the final size you want. e.g., if you want a final equation of size `30`, you might set this to `35`, so that it has a bit of room to explore.
20
- 8. Set `maxdepth` strictly, but leave a bit of room for exploration. e.g., if you want a final equation limited to a depth of `5`, you might set this to `6` or `7`, so that it has a bit of room to explore.
21
  9. Set `parsimony` equal to about the minimum loss you would expect, divided by 5-10. e.g., if you expect the final equation to have a loss of `0.001`, you might set `parsimony=0.0001`.
22
  10. Set `weight_optimize` to some larger value, maybe `0.001`. This is very important if `ncyclesperiteration` is large, so that optimization happens more frequently.
23
  11. Set `turbo` to `True`. This may or not work, if there's an error just turn it off (some operators are not SIMD-capable). If it does work, it should give you a nice 20% speedup.
@@ -31,7 +31,7 @@ Some things I try out to see if they help:
31
  2. Try setting `adaptive_parsimony_scaling` a bit larger, maybe up to `1000`.
32
  3. Sometimes I try using `warmup_maxsize_by`. This is useful if you find that the search finds a very complex equation very quickly, and then gets stuck. It basically forces it to start at the simpler equations and build up complexity slowly.
33
  4. Play around with different losses:
34
- - I typically try `L2DistLoss()` and `L1DistLoss()`. L1 loss is more robust to outliers compared to L2 (L1 finds the median, while L2 finds the mean of a random variable), so is often a good choice for a noisy dataset.
35
  - I might also provide the `weights` parameter to `fit` if there is some reasonable choice of weighting. For example, maybe I know the signal-to-noise of a particular row of `y` - I would set that SNR equal to the weights. Or, perhaps I do some sort of importance sampling, and weight the rows by importance.
36
 
37
  Very rarely I might also try tuning the mutation weights, the crossover probability, or the optimization parameters. I never use `denoise` or `select_k_features` as I find they aren't very useful.
 
17
  5. Set `ncyclesperiteration` to maybe `5000` or so, until the head node occupation is under `10%`.
18
  6. Set `constraints` and `nested_constraints` as strict as possible. These can help quite a bit with exploration. Typically, if I am using `pow`, I would set `constraints={"pow": (9, 1)}`, so that power laws can only have a variable or constant as their exponent. If I am using `sin` and `cos`, I also like to set `nested_constraints={"sin": {"sin": 0, "cos": 0}, "cos": {"sin": 0, "cos": 0}}`, so that sin and cos can't be nested, which seems to happen frequently. (Although in practice I would just use `sin`, since the search could always add a phase offset!)
19
  7. Set `maxsize` a bit larger than the final size you want. e.g., if you want a final equation of size `30`, you might set this to `35`, so that it has a bit of room to explore.
20
+ 8. Set `maxdepth` strictly, but leave a bit of room for exploration. e.g., if you want a final equation limited to a depth of `5`, you might set this to `6` or `7`, so that it has a bit of room to explore.
21
  9. Set `parsimony` equal to about the minimum loss you would expect, divided by 5-10. e.g., if you expect the final equation to have a loss of `0.001`, you might set `parsimony=0.0001`.
22
  10. Set `weight_optimize` to some larger value, maybe `0.001`. This is very important if `ncyclesperiteration` is large, so that optimization happens more frequently.
23
  11. Set `turbo` to `True`. This may or not work, if there's an error just turn it off (some operators are not SIMD-capable). If it does work, it should give you a nice 20% speedup.
 
31
  2. Try setting `adaptive_parsimony_scaling` a bit larger, maybe up to `1000`.
32
  3. Sometimes I try using `warmup_maxsize_by`. This is useful if you find that the search finds a very complex equation very quickly, and then gets stuck. It basically forces it to start at the simpler equations and build up complexity slowly.
33
  4. Play around with different losses:
34
+ - I typically try `L2DistLoss()` and `L1DistLoss()`. L1 loss is more robust to outliers compared to L2 (L1 finds the median, while L2 finds the mean of a random variable), so is often a good choice for a noisy dataset.
35
  - I might also provide the `weights` parameter to `fit` if there is some reasonable choice of weighting. For example, maybe I know the signal-to-noise of a particular row of `y` - I would set that SNR equal to the weights. Or, perhaps I do some sort of importance sampling, and weight the rows by importance.
36
 
37
  Very rarely I might also try tuning the mutation weights, the crossover probability, or the optimization parameters. I never use `denoise` or `select_k_features` as I find they aren't very useful.
environment.yml CHANGED
@@ -10,4 +10,4 @@ dependencies:
10
  - pyjulia
11
  - openlibm
12
  - openspecfun
13
- - click
 
10
  - pyjulia
11
  - openlibm
12
  - openspecfun
13
+ - click
examples/pysr_demo.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
mkdocs.yml CHANGED
@@ -13,7 +13,7 @@ theme:
13
  toggle:
14
  icon: material/toggle-switch-off-outline
15
  name: Switch to light mode
16
-
17
 
18
  features:
19
  - navigation.expand
 
13
  toggle:
14
  icon: material/toggle-switch-off-outline
15
  name: Switch to light mode
16
+
17
 
18
  features:
19
  - navigation.expand
pyproject.toml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [tool.isort]
2
+ profile = "black"
pysr/__init__.py CHANGED
@@ -1,14 +1,23 @@
1
  from . import sklearn_monkeypatch
2
- from .version import __version__
3
- from .sr import (
4
- pysr,
5
- PySRRegressor,
6
- best,
7
- best_tex,
8
- best_callable,
9
- best_row,
10
- )
11
- from .julia_helpers import install
12
- from .feynman_problems import Problem, FeynmanProblem
13
  from .export_jax import sympy2jax
14
  from .export_torch import sympy2torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  from . import sklearn_monkeypatch
 
 
 
 
 
 
 
 
 
 
 
2
  from .export_jax import sympy2jax
3
  from .export_torch import sympy2torch
4
+ from .feynman_problems import FeynmanProblem, Problem
5
+ from .julia_helpers import install
6
+ from .sr import PySRRegressor, best, best_callable, best_row, best_tex, pysr
7
+ from .version import __version__
8
+
9
+ __all__ = [
10
+ "sklearn_monkeypatch",
11
+ "sympy2jax",
12
+ "sympy2torch",
13
+ "FeynmanProblem",
14
+ "Problem",
15
+ "install",
16
+ "PySRRegressor",
17
+ "best",
18
+ "best_callable",
19
+ "best_row",
20
+ "best_tex",
21
+ "pysr",
22
+ "__version__",
23
+ ]
pysr/_cli/main.py CHANGED
@@ -1,4 +1,5 @@
1
  import click
 
2
  from ..julia_helpers import install
3
 
4
 
 
1
  import click
2
+
3
  from ..julia_helpers import install
4
 
5
 
pysr/export_jax.py CHANGED
@@ -1,7 +1,4 @@
1
- import functools as ft
2
  import sympy
3
- import string
4
- import random
5
 
6
  # Special since need to reduce arguments.
7
  MUL = 0
 
 
1
  import sympy
 
 
2
 
3
  # Special since need to reduce arguments.
4
  MUL = 0
pysr/export_latex.py CHANGED
@@ -1,9 +1,9 @@
1
  """Functions to help export PySR equations to LaTeX."""
 
 
 
2
  import sympy
3
  from sympy.printing.latex import LatexPrinter
4
- import pandas as pd
5
- from typing import List
6
- import warnings
7
 
8
 
9
  class PreciseLatexPrinter(LatexPrinter):
 
1
  """Functions to help export PySR equations to LaTeX."""
2
+ from typing import List
3
+
4
+ import pandas as pd
5
  import sympy
6
  from sympy.printing.latex import LatexPrinter
 
 
 
7
 
8
 
9
  class PreciseLatexPrinter(LatexPrinter):
pysr/export_numpy.py CHANGED
@@ -1,8 +1,9 @@
1
  """Code for exporting discovered expressions to numpy"""
 
 
2
  import numpy as np
3
  import pandas as pd
4
  from sympy import lambdify
5
- import warnings
6
 
7
 
8
  class CallableEquation:
 
1
  """Code for exporting discovered expressions to numpy"""
2
+ import warnings
3
+
4
  import numpy as np
5
  import pandas as pd
6
  from sympy import lambdify
 
7
 
8
 
9
  class CallableEquation:
pysr/export_torch.py CHANGED
@@ -5,6 +5,7 @@
5
 
6
  import collections as co
7
  import functools as ft
 
8
  import sympy
9
 
10
 
 
5
 
6
  import collections as co
7
  import functools as ft
8
+
9
  import sympy
10
 
11
 
pysr/feynman_problems.py CHANGED
@@ -1,8 +1,10 @@
1
- import numpy as np
2
  import csv
3
- from .sr import pysr, best
4
- from pathlib import Path
5
  from functools import partial
 
 
 
 
 
6
 
7
  PKG_DIR = Path(__file__).parents[1]
8
  FEYNMAN_DATASET = PKG_DIR / "datasets" / "FeynmanEquations.csv"
@@ -118,6 +120,7 @@ def do_feynman_experiments_parallel(
118
  data_dir=FEYNMAN_DATASET,
119
  ):
120
  import multiprocessing as mp
 
121
  from tqdm import tqdm
122
 
123
  problems = mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir)
 
 
1
  import csv
 
 
2
  from functools import partial
3
+ from pathlib import Path
4
+
5
+ import numpy as np
6
+
7
+ from .sr import best, pysr
8
 
9
  PKG_DIR = Path(__file__).parents[1]
10
  FEYNMAN_DATASET = PKG_DIR / "datasets" / "FeynmanEquations.csv"
 
120
  data_dir=FEYNMAN_DATASET,
121
  ):
122
  import multiprocessing as mp
123
+
124
  from tqdm import tqdm
125
 
126
  problems = mk_problems(first=first, gen=True, dp=dp, data_dir=data_dir)
pysr/julia_helpers.py CHANGED
@@ -1,12 +1,13 @@
1
  """Functions for initializing the Julia environment and installing deps."""
2
- import sys
3
  import subprocess
 
4
  import warnings
5
  from pathlib import Path
6
- import os
7
  from julia.api import JuliaError
8
 
9
- from .version import __version__, __symbolic_regression_jl_version__
10
 
11
  juliainfo = None
12
  julia_initialized = False
 
1
  """Functions for initializing the Julia environment and installing deps."""
2
+ import os
3
  import subprocess
4
+ import sys
5
  import warnings
6
  from pathlib import Path
7
+
8
  from julia.api import JuliaError
9
 
10
+ from .version import __symbolic_regression_jl_version__, __version__
11
 
12
  juliainfo = None
13
  julia_initialized = False
pysr/sr.py CHANGED
@@ -1,40 +1,37 @@
1
  """Define the PySRRegressor scikit-learn interface."""
2
  import copy
3
- from io import StringIO
4
  import os
5
- import sys
6
- import numpy as np
7
- import pandas as pd
8
- import sympy
9
- from sympy import sympify
10
  import re
11
- import tempfile
12
  import shutil
13
- from pathlib import Path
14
- import pickle as pkl
15
- from datetime import datetime
16
  import warnings
 
 
17
  from multiprocessing import cpu_count
18
- from sklearn.base import BaseEstimator, RegressorMixin, MultiOutputMixin
 
 
 
 
 
19
  from sklearn.utils import check_array, check_consistent_length, check_random_state
20
- from sklearn.utils.validation import (
21
- _check_feature_names_in,
22
- check_is_fitted,
23
- )
24
 
 
 
 
25
  from .julia_helpers import (
26
- init_julia,
27
- _process_julia_project,
28
- is_julia_version_greater_eq,
29
  _escape_filename,
 
30
  _load_cluster_manager,
 
31
  _update_julia_project,
32
- _load_backend,
 
33
  )
34
- from .export_numpy import CallableEquation
35
- from .export_latex import generate_single_table, generate_multiple_tables, to_latex
36
- from .deprecated import make_deprecated_kwargs_for_pysr_regressor
37
-
38
 
39
  Main = None # TODO: Rename to more descriptive name like "julia_runtime"
40
 
@@ -2454,7 +2451,7 @@ def idx_model_selection(equations: pd.DataFrame, model_selection: str) -> int:
2454
  def _denoise(X, y, Xresampled=None, random_state=None):
2455
  """Denoise the dataset using a Gaussian process."""
2456
  from sklearn.gaussian_process import GaussianProcessRegressor
2457
- from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel
2458
 
2459
  gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
2460
  gpr = GaussianProcessRegressor(
 
1
  """Define the PySRRegressor scikit-learn interface."""
2
  import copy
 
3
  import os
4
+ import pickle as pkl
 
 
 
 
5
  import re
 
6
  import shutil
7
+ import sys
8
+ import tempfile
 
9
  import warnings
10
+ from datetime import datetime
11
+ from io import StringIO
12
  from multiprocessing import cpu_count
13
+ from pathlib import Path
14
+
15
+ import numpy as np
16
+ import pandas as pd
17
+ import sympy
18
+ from sklearn.base import BaseEstimator, MultiOutputMixin, RegressorMixin
19
  from sklearn.utils import check_array, check_consistent_length, check_random_state
20
+ from sklearn.utils.validation import _check_feature_names_in, check_is_fitted
21
+ from sympy import sympify
 
 
22
 
23
+ from .deprecated import make_deprecated_kwargs_for_pysr_regressor
24
+ from .export_latex import generate_multiple_tables, generate_single_table, to_latex
25
+ from .export_numpy import CallableEquation
26
  from .julia_helpers import (
 
 
 
27
  _escape_filename,
28
+ _load_backend,
29
  _load_cluster_manager,
30
+ _process_julia_project,
31
  _update_julia_project,
32
+ init_julia,
33
+ is_julia_version_greater_eq,
34
  )
 
 
 
 
35
 
36
  Main = None # TODO: Rename to more descriptive name like "julia_runtime"
37
 
 
2451
  def _denoise(X, y, Xresampled=None, random_state=None):
2452
  """Denoise the dataset using a Gaussian process."""
2453
  from sklearn.gaussian_process import GaussianProcessRegressor
2454
+ from sklearn.gaussian_process.kernels import RBF, ConstantKernel, WhiteKernel
2455
 
2456
  gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
2457
  gpr = GaussianProcessRegressor(
pysr/test/__init__.py CHANGED
@@ -1,5 +1,7 @@
1
  from .test import runtests
 
2
  from .test_env import runtests as runtests_env
3
  from .test_jax import runtests as runtests_jax
4
  from .test_torch import runtests as runtests_torch
5
- from .test_cli import runtests as runtests_cli
 
 
1
  from .test import runtests
2
+ from .test_cli import runtests as runtests_cli
3
  from .test_env import runtests as runtests_env
4
  from .test_jax import runtests as runtests_jax
5
  from .test_torch import runtests as runtests_torch
6
+
7
+ __all__ = ["runtests", "runtests_env", "runtests_jax", "runtests_torch", "runtests_cli"]
pysr/test/test.py CHANGED
@@ -1,28 +1,28 @@
 
1
  import os
 
 
2
  import traceback
3
- import inspect
4
  import unittest
 
 
 
5
  import numpy as np
 
 
6
  from sklearn import model_selection
7
  from sklearn.utils.estimator_checks import check_estimator
8
- import sympy
9
- import pandas as pd
10
- import warnings
11
- import pickle as pkl
12
- import tempfile
13
- from pathlib import Path
14
 
15
- from .. import julia_helpers
16
- from .. import PySRRegressor
17
  from ..sr import (
18
- run_feature_selection,
19
- _handle_feature_selection,
20
- _csv_filename_to_pkl_filename,
21
- idx_model_selection,
22
  _check_assertions,
 
 
23
  _process_constraints,
 
 
24
  )
25
- from ..export_latex import to_latex
26
 
27
  DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
28
  DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
 
1
+ import inspect
2
  import os
3
+ import pickle as pkl
4
+ import tempfile
5
  import traceback
 
6
  import unittest
7
+ import warnings
8
+ from pathlib import Path
9
+
10
  import numpy as np
11
+ import pandas as pd
12
+ import sympy
13
  from sklearn import model_selection
14
  from sklearn.utils.estimator_checks import check_estimator
 
 
 
 
 
 
15
 
16
+ from .. import PySRRegressor, julia_helpers
17
+ from ..export_latex import to_latex
18
  from ..sr import (
 
 
 
 
19
  _check_assertions,
20
+ _csv_filename_to_pkl_filename,
21
+ _handle_feature_selection,
22
  _process_constraints,
23
+ idx_model_selection,
24
+ run_feature_selection,
25
  )
 
26
 
27
  DEFAULT_PARAMS = inspect.signature(PySRRegressor.__init__).parameters
28
  DEFAULT_NITERATIONS = DEFAULT_PARAMS["niterations"].default
pysr/test/test_cli.py CHANGED
@@ -1,5 +1,7 @@
1
  import unittest
 
2
  from click import testing as click_testing
 
3
  from .._cli.main import pysr
4
 
5
 
 
1
  import unittest
2
+
3
  from click import testing as click_testing
4
+
5
  from .._cli.main import pysr
6
 
7
 
pysr/test/test_env.py CHANGED
@@ -1,7 +1,7 @@
1
  """Contains tests for creating and initializing custom Julia projects."""
2
 
3
- import unittest
4
  import os
 
5
  from tempfile import TemporaryDirectory
6
 
7
  from .. import julia_helpers
 
1
  """Contains tests for creating and initializing custom Julia projects."""
2
 
 
3
  import os
4
+ import unittest
5
  from tempfile import TemporaryDirectory
6
 
7
  from .. import julia_helpers