MilesCranmer commited on
Commit
bdf365a
1 Parent(s): 9a11423

Remove newlines which break docs building

Browse files
Files changed (1) hide show
  1. pysr/sr.py +0 -72
pysr/sr.py CHANGED
@@ -236,52 +236,40 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
236
  - `"best"` selects the candidate model with the highest score
237
  among expressions with a loss better than at least 1.5x the
238
  most accurate model.
239
-
240
  binary_operators : list[str], default=["+", "-", "*", "/"]
241
  List of strings giving the binary operators in Julia's Base.
242
-
243
  unary_operators : list[str], default=None
244
  Same as :param`binary_operators` but for operators taking a
245
  single scalar.
246
-
247
  niterations : int, default=40
248
  Number of iterations of the algorithm to run. The best
249
  equations are printed and migrate between populations at the
250
  end of each iteration.
251
-
252
  populations : int, default=15
253
  Number of populations running.
254
-
255
  population_size : int, default=33
256
  Number of individuals in each population.
257
-
258
  max_evals : int, default=None
259
  Limits the total number of evaluations of expressions to
260
  this number.
261
-
262
  maxsize : int, default=20
263
  Max complexity of an equation.
264
-
265
  maxdepth : int, default=None
266
  Max depth of an equation. You can use both :param`maxsize` and
267
  :param`maxdepth`. :param`maxdepth` is by default not used.
268
-
269
  warmup_maxsize_by : float, default=0.0
270
  Whether to slowly increase max size from a small number up to
271
  the maxsize (if greater than 0). If greater than 0, says the
272
  fraction of training time at which the current maxsize will
273
  reach the user-passed maxsize.
274
-
275
  timeout_in_seconds : float, default=None
276
  Make the search return early once this many seconds have passed.
277
-
278
  constraints : dict[str, int | tuple[int,int]], default=None
279
  Dictionary of int (unary) or 2-tuples (binary), this enforces
280
  maxsize constraints on the individual arguments of operators.
281
  E.g., `'pow': (-1, 1)` says that power laws can have any
282
  complexity left argument, but only 1 complexity in the right
283
  argument. Use this to force more interpretable solutions.
284
-
285
  nested_constraints : dict[str, dict], default=None
286
  Specifies how many times a combination of operators can be
287
  nested. For example, `{"sin": {"cos": 0}}, "cos": {"cos": 2}}`
@@ -298,7 +286,6 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
298
  operators, you only need to provide a single number: both
299
  arguments are treated the same way, and the max of each
300
  argument is constrained.
301
-
302
  loss : str, default="L2DistLoss()"
303
  String of Julia code specifying the loss function. Can either
304
  be a loss from LossFunctions.jl, or your own loss written as a
@@ -314,7 +301,6 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
314
  `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`,
315
  `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
316
  `SigmoidLoss()`, `DWDMarginLoss(q)`.
317
-
318
  complexity_of_operators : dict[str, float], default=None
319
  If you would like to use a complexity other than 1 for an
320
  operator, specify the complexity here. For example,
@@ -323,210 +309,156 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
323
  the `+` operator (which is the default). You may specify real
324
  numbers for a complexity, and the total complexity of a tree
325
  will be rounded to the nearest integer after computing.
326
-
327
  complexity_of_constants : float, default=1
328
  Complexity of constants.
329
-
330
  complexity_of_variables : float, default=1
331
  Complexity of variables.
332
-
333
  parsimony : float, default=0.0032
334
  Multiplicative factor for how much to punish complexity.
335
-
336
  use_frequency : bool, default=True
337
  Whether to measure the frequency of complexities, and use that
338
  instead of parsimony to explore equation space. Will naturally
339
  find equations of all complexities.
340
-
341
  use_frequency_in_tournament : bool, default=True
342
  Whether to use the frequency mentioned above in the tournament,
343
  rather than just the simulated annealing.
344
-
345
  alpha : float, default=0.1
346
  Initial temperature for simulated annealing
347
  (requires :param`annealing` to be `True`).
348
-
349
  annealing : bool, default=False
350
  Whether to use annealing.
351
-
352
  early_stop_condition : { float | str }, default=None
353
  Stop the search early if this loss is reached. You may also
354
  pass a string containing a Julia function which
355
  takes a loss and complexity as input, for example:
356
  `"f(loss, complexity) = (loss < 0.1) && (complexity < 10)"`.
357
-
358
  ncyclesperiteration : int, default=550
359
  Number of total mutations to run, per 10 samples of the
360
  population, per iteration.
361
-
362
  fraction_replaced : float, default=0.000364
363
  How much of population to replace with migrating equations from
364
  other populations.
365
-
366
  fraction_replaced_hof : float, default=0.035
367
  How much of population to replace with migrating equations from
368
  hall of fame.
369
-
370
  weight_add_node : float, default=0.79
371
  Relative likelihood for mutation to add a node.
372
-
373
  weight_insert_node : float, default=5.1
374
  Relative likelihood for mutation to insert a node.
375
-
376
  weight_delete_node : float, default=1.7
377
  Relative likelihood for mutation to delete a node.
378
-
379
  weight_do_nothing : float, default=0.21
380
  Relative likelihood for mutation to leave the individual.
381
-
382
  weight_mutate_constant : float, default=0.048
383
  Relative likelihood for mutation to change the constant slightly
384
  in a random direction.
385
-
386
  weight_mutate_operator : float, default=0.47
387
  Relative likelihood for mutation to swap an operator.
388
-
389
  weight_randomize : float, default=0.00023
390
  Relative likelihood for mutation to completely delete and then
391
  randomly generate the equation
392
-
393
  weight_simplify : float, default=0.0020
394
  Relative likelihood for mutation to simplify constant parts by evaluation
395
-
396
  crossover_probability : float, default=0.066
397
  Absolute probability of crossover-type genetic operation, instead of a mutation.
398
-
399
  skip_mutation_failures : bool, default=True
400
  Whether to skip mutation and crossover failures, rather than
401
  simply re-sampling the current member.
402
-
403
  migration : bool, default=True
404
  Whether to migrate.
405
-
406
  hof_migration : bool, default=True
407
  Whether to have the hall of fame migrate.
408
-
409
  topn : int, default=12
410
  How many top individuals migrate from each population.
411
-
412
  should_optimize_constants : bool, default=True
413
  Whether to numerically optimize constants (Nelder-Mead/Newton)
414
  at the end of each iteration.
415
-
416
  optimizer_algorithm : str, default="BFGS"
417
  Optimization scheme to use for optimizing constants. Can currently
418
  be `NelderMead` or `BFGS`.
419
-
420
  optimizer_nrestarts : int, default=2
421
  Number of time to restart the constants optimization process with
422
  different initial conditions.
423
-
424
  optimize_probability : float, default=0.14
425
  Probability of optimizing the constants during a single iteration of
426
  the evolutionary algorithm.
427
-
428
  optimizer_iterations : int, default=8
429
  Number of iterations that the constants optimizer can take.
430
-
431
  perturbation_factor : float, default=0.076
432
  Constants are perturbed by a max factor of
433
  (perturbation_factor*T + 1). Either multiplied by this or
434
  divided by this.
435
-
436
  tournament_selection_n : int, default=10
437
  Number of expressions to consider in each tournament.
438
-
439
  tournament_selection_p : float, default=0.86
440
  Probability of selecting the best expression in each
441
  tournament. The probability will decay as p*(1-p)^n for other
442
  expressions, sorted by loss.
443
-
444
  procs : int, default=multiprocessing.cpu_count()
445
  Number of processes (=number of populations running).
446
-
447
  multithreading : bool, default=True
448
  Use multithreading instead of distributed backend.
449
  Using procs=0 will turn off both.
450
-
451
  cluster_manager : str, default=None
452
  For distributed computing, this sets the job queue system. Set
453
  to one of "slurm", "pbs", "lsf", "sge", "qrsh", "scyld", or
454
  "htc". If set to one of these, PySR will run in distributed
455
  mode, and use `procs` to figure out how many processes to launch.
456
-
457
  batching : bool, default=False
458
  Whether to compare population members on small batches during
459
  evolution. Still uses full dataset for comparing against hall
460
  of fame.
461
-
462
  batch_size : int, default=50
463
  The amount of data to use if doing batching.
464
-
465
  fast_cycle : bool, default=False (experimental)
466
  Batch over population subsamples. This is a slightly different
467
  algorithm than regularized evolution, but does cycles 15%
468
  faster. May be algorithmically less efficient.
469
-
470
  precision : int, default=32
471
  What precision to use for the data. By default this is 32
472
  (float32), but you can select 64 or 16 as well.
473
-
474
  random_state : int, Numpy RandomState instance or None, default=None
475
  Pass an int for reproducible results across multiple function calls.
476
  See :term:`Glossary <random_state>`.
477
-
478
  deterministic : bool, default=False
479
  Make a PySR search give the same result every run.
480
  To use this, you must turn off parallelism
481
  (with :param`procs`=0, :param`multithreading`=False),
482
  and set :param`random_state` to a fixed seed.
483
-
484
  warm_start : bool, default=False
485
  Tells fit to continue from where the last call to fit finished.
486
  If false, each call to fit will be fresh, overwriting previous results.
487
-
488
  verbosity : int, default=1e9
489
  What verbosity level to use. 0 means minimal print statements.
490
-
491
  update_verbosity : int, default=None
492
  What verbosity level to use for package updates.
493
  Will take value of :param`verbosity` if not given.
494
-
495
  progress : bool, default=True
496
  Whether to use a progress bar instead of printing to stdout.
497
-
498
  equation_file : str, default=None
499
  Where to save the files (.csv extension).
500
-
501
  temp_equation_file : bool, default=False
502
  Whether to put the hall of fame file in the temp directory.
503
  Deletion is then controlled with the :param`delete_tempfiles`
504
  parameter.
505
-
506
  tempdir : str, default=None
507
  directory for the temporary files.
508
-
509
  delete_tempfiles : bool, default=True
510
  Whether to delete the temporary files after finishing.
511
-
512
  julia_project : str, default=None
513
  A Julia environment location containing a Project.toml
514
  (and potentially the source code for SymbolicRegression.jl).
515
  Default gives the Python package directory, where a
516
  Project.toml file should be present from the install.
517
-
518
  update: bool, default=True
519
  Whether to automatically update Julia packages.
520
-
521
  output_jax_format : bool, default=False
522
  Whether to create a 'jax_format' column in the output,
523
  containing jax-callable functions and the default parameters in
524
  a jax array.
525
-
526
  output_torch_format : bool, default=False
527
  Whether to create a 'torch_format' column in the output,
528
  containing a torch module with trainable parameters.
529
-
530
  extra_sympy_mappings : dict[str, Callable], default=None
531
  Provides mappings between custom :param`binary_operators` or
532
  :param`unary_operators` defined in julia strings, to those same
@@ -534,23 +466,19 @@ class PySRRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
534
  E.G if `unary_operators=["inv(x)=1/x"]`, then for the fitted
535
  model to be export to sympy, :param`extra_sympy_mappings`
536
  would be `{"inv": lambda x: 1/x}`.
537
-
538
  extra_jax_mappings : dict[Callable, str], default=None
539
  Similar to :param`extra_sympy_mappings` but for model export
540
  to jax. The dictionary maps sympy functions to jax functions.
541
  For example: `extra_jax_mappings={sympy.sin: "jnp.sin"}` maps
542
  the `sympy.sin` function to the equivalent jax expression `jnp.sin`.
543
-
544
  extra_torch_mappings : dict[Callable, Callable], default=None
545
  The same as :param`extra_jax_mappings` but for model export
546
  to pytorch. Note that the dictionary keys should be callable
547
  pytorch expressions.
548
  For example: `extra_torch_mappings={sympy.sin: torch.sin}`
549
-
550
  denoise : bool, default=False
551
  Whether to use a Gaussian Process to denoise the data before
552
  inputting to PySR. Can help PySR fit noisy data.
553
-
554
  select_k_features : int, default=None
555
  whether to run feature selection in Python using random forests,
556
  before passing to the symbolic regression code. None means no
 
236
  - `"best"` selects the candidate model with the highest score
237
  among expressions with a loss better than at least 1.5x the
238
  most accurate model.
 
239
  binary_operators : list[str], default=["+", "-", "*", "/"]
240
  List of strings giving the binary operators in Julia's Base.
 
241
  unary_operators : list[str], default=None
242
  Same as :param`binary_operators` but for operators taking a
243
  single scalar.
 
244
  niterations : int, default=40
245
  Number of iterations of the algorithm to run. The best
246
  equations are printed and migrate between populations at the
247
  end of each iteration.
 
248
  populations : int, default=15
249
  Number of populations running.
 
250
  population_size : int, default=33
251
  Number of individuals in each population.
 
252
  max_evals : int, default=None
253
  Limits the total number of evaluations of expressions to
254
  this number.
 
255
  maxsize : int, default=20
256
  Max complexity of an equation.
 
257
  maxdepth : int, default=None
258
  Max depth of an equation. You can use both :param`maxsize` and
259
  :param`maxdepth`. :param`maxdepth` is by default not used.
 
260
  warmup_maxsize_by : float, default=0.0
261
  Whether to slowly increase max size from a small number up to
262
  the maxsize (if greater than 0). If greater than 0, says the
263
  fraction of training time at which the current maxsize will
264
  reach the user-passed maxsize.
 
265
  timeout_in_seconds : float, default=None
266
  Make the search return early once this many seconds have passed.
 
267
  constraints : dict[str, int | tuple[int,int]], default=None
268
  Dictionary of int (unary) or 2-tuples (binary), this enforces
269
  maxsize constraints on the individual arguments of operators.
270
  E.g., `'pow': (-1, 1)` says that power laws can have any
271
  complexity left argument, but only 1 complexity in the right
272
  argument. Use this to force more interpretable solutions.
 
273
  nested_constraints : dict[str, dict], default=None
274
  Specifies how many times a combination of operators can be
275
  nested. For example, `{"sin": {"cos": 0}}, "cos": {"cos": 2}}`
 
286
  operators, you only need to provide a single number: both
287
  arguments are treated the same way, and the max of each
288
  argument is constrained.
 
289
  loss : str, default="L2DistLoss()"
290
  String of Julia code specifying the loss function. Can either
291
  be a loss from LossFunctions.jl, or your own loss written as a
 
301
  `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`,
302
  `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
303
  `SigmoidLoss()`, `DWDMarginLoss(q)`.
 
304
  complexity_of_operators : dict[str, float], default=None
305
  If you would like to use a complexity other than 1 for an
306
  operator, specify the complexity here. For example,
 
309
  the `+` operator (which is the default). You may specify real
310
  numbers for a complexity, and the total complexity of a tree
311
  will be rounded to the nearest integer after computing.
 
312
  complexity_of_constants : float, default=1
313
  Complexity of constants.
 
314
  complexity_of_variables : float, default=1
315
  Complexity of variables.
 
316
  parsimony : float, default=0.0032
317
  Multiplicative factor for how much to punish complexity.
 
318
  use_frequency : bool, default=True
319
  Whether to measure the frequency of complexities, and use that
320
  instead of parsimony to explore equation space. Will naturally
321
  find equations of all complexities.
 
322
  use_frequency_in_tournament : bool, default=True
323
  Whether to use the frequency mentioned above in the tournament,
324
  rather than just the simulated annealing.
 
325
  alpha : float, default=0.1
326
  Initial temperature for simulated annealing
327
  (requires :param`annealing` to be `True`).
 
328
  annealing : bool, default=False
329
  Whether to use annealing.
 
330
  early_stop_condition : { float | str }, default=None
331
  Stop the search early if this loss is reached. You may also
332
  pass a string containing a Julia function which
333
  takes a loss and complexity as input, for example:
334
  `"f(loss, complexity) = (loss < 0.1) && (complexity < 10)"`.
 
335
  ncyclesperiteration : int, default=550
336
  Number of total mutations to run, per 10 samples of the
337
  population, per iteration.
 
338
  fraction_replaced : float, default=0.000364
339
  How much of population to replace with migrating equations from
340
  other populations.
 
341
  fraction_replaced_hof : float, default=0.035
342
  How much of population to replace with migrating equations from
343
  hall of fame.
 
344
  weight_add_node : float, default=0.79
345
  Relative likelihood for mutation to add a node.
 
346
  weight_insert_node : float, default=5.1
347
  Relative likelihood for mutation to insert a node.
 
348
  weight_delete_node : float, default=1.7
349
  Relative likelihood for mutation to delete a node.
 
350
  weight_do_nothing : float, default=0.21
351
  Relative likelihood for mutation to leave the individual.
 
352
  weight_mutate_constant : float, default=0.048
353
  Relative likelihood for mutation to change the constant slightly
354
  in a random direction.
 
355
  weight_mutate_operator : float, default=0.47
356
  Relative likelihood for mutation to swap an operator.
 
357
  weight_randomize : float, default=0.00023
358
  Relative likelihood for mutation to completely delete and then
359
  randomly generate the equation
 
360
  weight_simplify : float, default=0.0020
361
  Relative likelihood for mutation to simplify constant parts by evaluation
 
362
  crossover_probability : float, default=0.066
363
  Absolute probability of crossover-type genetic operation, instead of a mutation.
 
364
  skip_mutation_failures : bool, default=True
365
  Whether to skip mutation and crossover failures, rather than
366
  simply re-sampling the current member.
 
367
  migration : bool, default=True
368
  Whether to migrate.
 
369
  hof_migration : bool, default=True
370
  Whether to have the hall of fame migrate.
 
371
  topn : int, default=12
372
  How many top individuals migrate from each population.
 
373
  should_optimize_constants : bool, default=True
374
  Whether to numerically optimize constants (Nelder-Mead/Newton)
375
  at the end of each iteration.
 
376
  optimizer_algorithm : str, default="BFGS"
377
  Optimization scheme to use for optimizing constants. Can currently
378
  be `NelderMead` or `BFGS`.
 
379
  optimizer_nrestarts : int, default=2
380
  Number of time to restart the constants optimization process with
381
  different initial conditions.
 
382
  optimize_probability : float, default=0.14
383
  Probability of optimizing the constants during a single iteration of
384
  the evolutionary algorithm.
 
385
  optimizer_iterations : int, default=8
386
  Number of iterations that the constants optimizer can take.
 
387
  perturbation_factor : float, default=0.076
388
  Constants are perturbed by a max factor of
389
  (perturbation_factor*T + 1). Either multiplied by this or
390
  divided by this.
 
391
  tournament_selection_n : int, default=10
392
  Number of expressions to consider in each tournament.
 
393
  tournament_selection_p : float, default=0.86
394
  Probability of selecting the best expression in each
395
  tournament. The probability will decay as p*(1-p)^n for other
396
  expressions, sorted by loss.
 
397
  procs : int, default=multiprocessing.cpu_count()
398
  Number of processes (=number of populations running).
 
399
  multithreading : bool, default=True
400
  Use multithreading instead of distributed backend.
401
  Using procs=0 will turn off both.
 
402
  cluster_manager : str, default=None
403
  For distributed computing, this sets the job queue system. Set
404
  to one of "slurm", "pbs", "lsf", "sge", "qrsh", "scyld", or
405
  "htc". If set to one of these, PySR will run in distributed
406
  mode, and use `procs` to figure out how many processes to launch.
 
407
  batching : bool, default=False
408
  Whether to compare population members on small batches during
409
  evolution. Still uses full dataset for comparing against hall
410
  of fame.
 
411
  batch_size : int, default=50
412
  The amount of data to use if doing batching.
 
413
  fast_cycle : bool, default=False (experimental)
414
  Batch over population subsamples. This is a slightly different
415
  algorithm than regularized evolution, but does cycles 15%
416
  faster. May be algorithmically less efficient.
 
417
  precision : int, default=32
418
  What precision to use for the data. By default this is 32
419
  (float32), but you can select 64 or 16 as well.
 
420
  random_state : int, Numpy RandomState instance or None, default=None
421
  Pass an int for reproducible results across multiple function calls.
422
  See :term:`Glossary <random_state>`.
 
423
  deterministic : bool, default=False
424
  Make a PySR search give the same result every run.
425
  To use this, you must turn off parallelism
426
  (with :param`procs`=0, :param`multithreading`=False),
427
  and set :param`random_state` to a fixed seed.
 
428
  warm_start : bool, default=False
429
  Tells fit to continue from where the last call to fit finished.
430
  If false, each call to fit will be fresh, overwriting previous results.
 
431
  verbosity : int, default=1e9
432
  What verbosity level to use. 0 means minimal print statements.
 
433
  update_verbosity : int, default=None
434
  What verbosity level to use for package updates.
435
  Will take value of :param`verbosity` if not given.
 
436
  progress : bool, default=True
437
  Whether to use a progress bar instead of printing to stdout.
 
438
  equation_file : str, default=None
439
  Where to save the files (.csv extension).
 
440
  temp_equation_file : bool, default=False
441
  Whether to put the hall of fame file in the temp directory.
442
  Deletion is then controlled with the :param`delete_tempfiles`
443
  parameter.
 
444
  tempdir : str, default=None
445
  directory for the temporary files.
 
446
  delete_tempfiles : bool, default=True
447
  Whether to delete the temporary files after finishing.
 
448
  julia_project : str, default=None
449
  A Julia environment location containing a Project.toml
450
  (and potentially the source code for SymbolicRegression.jl).
451
  Default gives the Python package directory, where a
452
  Project.toml file should be present from the install.
 
453
  update: bool, default=True
454
  Whether to automatically update Julia packages.
 
455
  output_jax_format : bool, default=False
456
  Whether to create a 'jax_format' column in the output,
457
  containing jax-callable functions and the default parameters in
458
  a jax array.
 
459
  output_torch_format : bool, default=False
460
  Whether to create a 'torch_format' column in the output,
461
  containing a torch module with trainable parameters.
 
462
  extra_sympy_mappings : dict[str, Callable], default=None
463
  Provides mappings between custom :param`binary_operators` or
464
  :param`unary_operators` defined in julia strings, to those same
 
466
  E.G if `unary_operators=["inv(x)=1/x"]`, then for the fitted
467
  model to be export to sympy, :param`extra_sympy_mappings`
468
  would be `{"inv": lambda x: 1/x}`.
 
469
  extra_jax_mappings : dict[Callable, str], default=None
470
  Similar to :param`extra_sympy_mappings` but for model export
471
  to jax. The dictionary maps sympy functions to jax functions.
472
  For example: `extra_jax_mappings={sympy.sin: "jnp.sin"}` maps
473
  the `sympy.sin` function to the equivalent jax expression `jnp.sin`.
 
474
  extra_torch_mappings : dict[Callable, Callable], default=None
475
  The same as :param`extra_jax_mappings` but for model export
476
  to pytorch. Note that the dictionary keys should be callable
477
  pytorch expressions.
478
  For example: `extra_torch_mappings={sympy.sin: torch.sin}`
 
479
  denoise : bool, default=False
480
  Whether to use a Gaussian Process to denoise the data before
481
  inputting to PySR. Can help PySR fit noisy data.
 
482
  select_k_features : int, default=None
483
  whether to run feature selection in Python using random forests,
484
  before passing to the symbolic regression code. None means no