Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
cc2f913
1
Parent(s):
a1e142a
Add file to do hyperparam optimization
Browse files- hyperopt.py +162 -0
hyperopt.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Start a hyperoptimization from a single node"""
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import pickle as pkl
|
5 |
+
import hyperopt
|
6 |
+
from hyperopt import hp, fmin, tpe, Trials
|
7 |
+
import signal
|
8 |
+
import eureqa
|
9 |
+
|
10 |
+
|
11 |
+
#Change the following code to your file
|
12 |
+
################################################################################
|
13 |
+
TRIALS_FOLDER = 'trials'
|
14 |
+
NUMBER_TRIALS_PER_RUN = 1
|
15 |
+
|
16 |
+
def run_trial(args):
|
17 |
+
"""Evaluate the model loss using the hyperparams in args
|
18 |
+
|
19 |
+
:args: A dictionary containing all hyperparameters
|
20 |
+
:returns: Dict with status and loss from cross-validation
|
21 |
+
|
22 |
+
"""
|
23 |
+
|
24 |
+
for key in 'niterations npop ncyclesperiteration topn'.split(' '):
|
25 |
+
args[key] = int(args[key])
|
26 |
+
|
27 |
+
def handler(signum, frame):
|
28 |
+
raise ValueError("Takes too long")
|
29 |
+
|
30 |
+
signal.signal(signal.SIGALRM, handler)
|
31 |
+
maxTime = 60
|
32 |
+
ntrials = 1 #3
|
33 |
+
equation_file=f'hall_of_fame_{np.random.rand():f}.csv'
|
34 |
+
signal.alarm(maxTime)
|
35 |
+
|
36 |
+
try:
|
37 |
+
trials = []
|
38 |
+
for i in range(1, 2):
|
39 |
+
trials.append([np.min(eureqa.eureqa(
|
40 |
+
test=f"simple{i}",
|
41 |
+
threads=20,
|
42 |
+
binary_operators=["plus", "mult", "pow", "div"],
|
43 |
+
unary_operators=["cos", "exp", "sin", "log"],
|
44 |
+
equation_file=equation_file,
|
45 |
+
**args)['MSE']) for _ in range(ntrials)])
|
46 |
+
signal.alarm(0)
|
47 |
+
except ValueError:
|
48 |
+
return {
|
49 |
+
'status': 'ok', # or 'fail' if nan loss
|
50 |
+
'loss': np.inf
|
51 |
+
}
|
52 |
+
|
53 |
+
loss = np.average(trials)
|
54 |
+
|
55 |
+
return {
|
56 |
+
'status': 'ok', # or 'fail' if nan loss
|
57 |
+
'loss': loss
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
space = {
|
62 |
+
'niterations': hp.qloguniform('niterations', np.log(10), 0.5, 1),
|
63 |
+
'npop': hp.qloguniform('npop', np.log(100), 0.5, 1),
|
64 |
+
'ncyclesperiteration': hp.qloguniform('ncyclesperiteration', np.log(5000), 0.5, 1),
|
65 |
+
'topn': hp.quniform('topn', 1, 30, 1),
|
66 |
+
'annealing': hp.choice('annealing', [False, True]),
|
67 |
+
'alpha': hp.lognormal('alpha', np.log(10.0), 0.5),
|
68 |
+
'parsimony': hp.lognormal('parsimony', np.log(1e-3), 0.5),
|
69 |
+
'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 0.5),
|
70 |
+
'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 0.5),
|
71 |
+
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 0.5),
|
72 |
+
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 0.5),
|
73 |
+
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 0.5),
|
74 |
+
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 0.5),
|
75 |
+
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 0.5),
|
76 |
+
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 0.5),
|
77 |
+
'weightDoNothing': hp.lognormal('weightDoNothing', np.log(1.0), 0.5),
|
78 |
+
}
|
79 |
+
|
80 |
+
################################################################################
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
def merge_trials(trials1, trials2_slice):
|
85 |
+
"""Merge two hyperopt trials objects
|
86 |
+
|
87 |
+
:trials1: The primary trials object
|
88 |
+
:trials2_slice: A slice of the trials object to be merged,
|
89 |
+
obtained with, e.g., trials2.trials[:10]
|
90 |
+
:returns: The merged trials object
|
91 |
+
|
92 |
+
"""
|
93 |
+
max_tid = 0
|
94 |
+
if len(trials1.trials) > 0:
|
95 |
+
max_tid = max([trial['tid'] for trial in trials1.trials])
|
96 |
+
|
97 |
+
for trial in trials2_slice:
|
98 |
+
tid = trial['tid'] + max_tid + 1
|
99 |
+
hyperopt_trial = Trials().new_trial_docs(
|
100 |
+
tids=[None],
|
101 |
+
specs=[None],
|
102 |
+
results=[None],
|
103 |
+
miscs=[None])
|
104 |
+
hyperopt_trial[0] = trial
|
105 |
+
hyperopt_trial[0]['tid'] = tid
|
106 |
+
hyperopt_trial[0]['misc']['tid'] = tid
|
107 |
+
for key in hyperopt_trial[0]['misc']['idxs'].keys():
|
108 |
+
hyperopt_trial[0]['misc']['idxs'][key] = [tid]
|
109 |
+
trials1.insert_trial_docs(hyperopt_trial)
|
110 |
+
trials1.refresh()
|
111 |
+
return trials1
|
112 |
+
|
113 |
+
loaded_fnames = []
|
114 |
+
trials = None
|
115 |
+
# Run new hyperparameter trials until killed
|
116 |
+
while True:
|
117 |
+
np.random.seed()
|
118 |
+
|
119 |
+
# Load up all runs:
|
120 |
+
import glob
|
121 |
+
path = TRIALS_FOLDER + '/*.pkl'
|
122 |
+
for fname in glob.glob(path):
|
123 |
+
if fname in loaded_fnames:
|
124 |
+
continue
|
125 |
+
|
126 |
+
trials_obj = pkl.load(open(fname, 'rb'))
|
127 |
+
n_trials = trials_obj['n']
|
128 |
+
trials_obj = trials_obj['trials']
|
129 |
+
if len(loaded_fnames) == 0:
|
130 |
+
trials = trials_obj
|
131 |
+
else:
|
132 |
+
print("Merging trials")
|
133 |
+
trials = merge_trials(trials, trials_obj.trials[-n_trials:])
|
134 |
+
|
135 |
+
loaded_fnames.append(fname)
|
136 |
+
|
137 |
+
print("Loaded trials", len(loaded_fnames))
|
138 |
+
if len(loaded_fnames) == 0:
|
139 |
+
trials = Trials()
|
140 |
+
|
141 |
+
n = NUMBER_TRIALS_PER_RUN
|
142 |
+
try:
|
143 |
+
best = fmin(run_trial,
|
144 |
+
space=space,
|
145 |
+
algo=tpe.suggest,
|
146 |
+
max_evals=n + len(trials.trials),
|
147 |
+
trials=trials,
|
148 |
+
verbose=1,
|
149 |
+
rstate=np.random.RandomState(np.random.randint(1,10**6))
|
150 |
+
)
|
151 |
+
except hyperopt.exceptions.AllTrialsFailed:
|
152 |
+
continue
|
153 |
+
|
154 |
+
print('current best', best)
|
155 |
+
hyperopt_trial = Trials()
|
156 |
+
|
157 |
+
# Merge with empty trials dataset:
|
158 |
+
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
|
159 |
+
new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + '.pkl'
|
160 |
+
pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
|
161 |
+
loaded_fnames.append(new_fname)
|
162 |
+
|