MilesCranmer commited on
Commit
d26d668
·
1 Parent(s): faa83d3

Add __repr__ method that lists selected equation

Browse files
Files changed (3) hide show
  1. TODO.md +3 -0
  2. example.py +8 -10
  3. pysr/sklearn.py +27 -3
TODO.md CHANGED
@@ -65,6 +65,9 @@
65
 
66
  - [ ] Automatically convert log, log10, log2, pow to the correct operators.
67
  - [ ] I think the simplification isn't working correctly (post-merging SymbolicUtils.)
 
 
 
68
 
69
  ## Feature ideas
70
 
 
65
 
66
  - [ ] Automatically convert log, log10, log2, pow to the correct operators.
67
  - [ ] I think the simplification isn't working correctly (post-merging SymbolicUtils.)
68
+ - [ ] Show demo of PySRRegressor. Fit equations, then show how to view equations.
69
+ - [ ] Add "selected" column string to regular equations dict.
70
+ - [ ] List "Loss" instead of "MSE"
71
 
72
  ## Feature ideas
73
 
example.py CHANGED
@@ -1,25 +1,23 @@
1
  import numpy as np
2
- from pysr import pysr, best
3
 
4
  # Dataset
5
- X = 2 * np.random.randn(100, 5)
6
- y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
7
 
8
  # Learn equations
9
- equations = pysr(
10
- X,
11
- y,
12
- niterations=5,
13
  binary_operators=["plus", "mult"],
14
  unary_operators=[
15
  "cos",
16
  "exp",
17
  "sin", # Pre-defined library of operators (see https://pysr.readthedocs.io/en/latest/docs/operators/)
18
- "inv(x) = 1/x",
19
  ],
20
  loss="loss(x, y) = abs(x - y)", # Custom loss function
21
  ) # Define your own operator! (Julia syntax)
22
 
23
- ... # (you can use ctl-c to exit early)
24
 
25
- print(best(equations))
 
1
  import numpy as np
2
+ from pysr import PySRRegressor
3
 
4
  # Dataset
5
+ X = 3 * np.random.randn(100, 5)
6
+ y = 3 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
7
 
8
  # Learn equations
9
+ model = PySRRegressor(
10
+ niterations=6,
 
 
11
  binary_operators=["plus", "mult"],
12
  unary_operators=[
13
  "cos",
14
  "exp",
15
  "sin", # Pre-defined library of operators (see https://pysr.readthedocs.io/en/latest/docs/operators/)
16
+ "inv(x) = 2/x",
17
  ],
18
  loss="loss(x, y) = abs(x - y)", # Custom loss function
19
  ) # Define your own operator! (Julia syntax)
20
 
21
+ model.fit(X, y)
22
 
23
+ print(model)
pysr/sklearn.py CHANGED
@@ -1,9 +1,10 @@
1
  from pysr import pysr, best_row
2
- from sklearn.base import BaseEstimator
3
  import inspect
 
4
 
5
 
6
- class PySRRegressor(BaseEstimator):
7
  def __init__(self, model_selection="accuracy", **params):
8
  """Initialize settings for pysr.pysr call.
9
 
@@ -18,7 +19,30 @@ class PySRRegressor(BaseEstimator):
18
  self.equations = None
19
 
20
  def __repr__(self):
21
- return f"PySRRegressor(equations={self.get_best()['sympy_format']})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  def set_params(self, **params):
24
  """Set parameters for pysr.pysr call or model_selection strategy."""
 
1
  from pysr import pysr, best_row
2
+ from sklearn.base import BaseEstimator, RegressorMixin
3
  import inspect
4
+ import pandas as pd
5
 
6
 
7
+ class PySRRegressor(BaseEstimator, RegressorMixin):
8
  def __init__(self, model_selection="accuracy", **params):
9
  """Initialize settings for pysr.pysr call.
10
 
 
19
  self.equations = None
20
 
21
  def __repr__(self):
22
+ if self.equations is None:
23
+ return "PySRRegressor.equations=None"
24
+
25
+ equations = self.equations
26
+ selected = ["" for _ in range(len(equations))]
27
+ if self.model_selection == "accuracy":
28
+ chosen_row = -1
29
+ elif self.model_selection == "best":
30
+ chosen_row = equations["score"].idxmax()
31
+ else:
32
+ raise NotImplementedError
33
+ selected[chosen_row] = ">"
34
+ output = "PySRRegressor.equations=[\n"
35
+ repr_equations = pd.DataFrame(
36
+ dict(
37
+ selected=selected,
38
+ score=equations["score"],
39
+ MSE=equations["MSE"],
40
+ Complexity=equations["Complexity"],
41
+ )
42
+ )
43
+ output += repr_equations.__repr__()
44
+ output += "\n]"
45
+ return output
46
 
47
  def set_params(self, **params):
48
  """Set parameters for pysr.pysr call or model_selection strategy."""