Spaces:
Running
Running
MilesCranmer
commited on
Commit
·
d3b42d5
1
Parent(s):
8d9fde2
Change default hyperparams; add skip option for mutation
Browse files- README.md +2 -2
- eureqa.jl +12 -7
- paralleleureqa.jl +4 -4
README.md
CHANGED
@@ -20,8 +20,8 @@ You can change the dataset here:
|
|
20 |
```
|
21 |
const nvar = 5;
|
22 |
const X = rand(100, nvar);
|
23 |
-
# Here is the function we want to learn (x2^2 + cos(x3)
|
24 |
-
const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3])
|
25 |
```
|
26 |
by either loading in a dataset, or modifying the definition of `y`.
|
27 |
|
|
|
20 |
```
|
21 |
const nvar = 5;
|
22 |
const X = rand(100, nvar);
|
23 |
+
# Here is the function we want to learn (x2^2 + cos(x3))
|
24 |
+
const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3])
|
25 |
```
|
26 |
by either loading in a dataset, or modifying the definition of `y`.
|
27 |
|
eureqa.jl
CHANGED
@@ -9,21 +9,24 @@ const binops = [plus, mult]
|
|
9 |
const unaops = [sin, cos, exp]
|
10 |
##########################
|
11 |
|
|
|
|
|
|
|
12 |
const nvar = 5;
|
13 |
# Here is the function we want to learn (x2^2 + cos(x3) + 5)
|
14 |
#
|
15 |
##########################
|
16 |
# # Dataset to learn
|
17 |
-
const X =
|
18 |
-
const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3])
|
19 |
##########################
|
20 |
|
21 |
##################
|
22 |
# Hyperparameters
|
23 |
# How much to punish complexity
|
24 |
-
const parsimony =
|
25 |
# How much to scale temperature by (T between 0 and 1)
|
26 |
-
const alpha =
|
27 |
const maxsize = 20
|
28 |
##################
|
29 |
|
@@ -315,7 +318,7 @@ function iterate(
|
|
315 |
prev = deepcopy(tree)
|
316 |
|
317 |
mutationChoice = rand()
|
318 |
-
weights = [8, 1, 1, 1]
|
319 |
weights /= sum(weights)
|
320 |
cweights = cumsum(weights)
|
321 |
n = countNodes(tree)
|
@@ -328,6 +331,8 @@ function iterate(
|
|
328 |
tree = appendRandomOp(tree)
|
329 |
elseif mutationChoice < cweights[4]
|
330 |
tree = deleteRandomOp(tree)
|
|
|
|
|
331 |
end
|
332 |
|
333 |
try
|
@@ -384,7 +389,7 @@ end
|
|
384 |
|
385 |
# Sample 10 random members of the population, and make a new one
|
386 |
function samplePop(pop::Population)::Population
|
387 |
-
idx = rand(1:pop.n,
|
388 |
return Population(pop.members[idx])#Population(deepcopy(pop.members[idx]))
|
389 |
end
|
390 |
|
@@ -414,7 +419,7 @@ end
|
|
414 |
# Pass through the population several times, replacing the oldest
|
415 |
# with the fittest of a small subsample
|
416 |
function regEvolCycle(pop::Population, T::Float64)::Population
|
417 |
-
for i=1:Int(pop.n/
|
418 |
baby = iterateSample(pop, T)
|
419 |
#printTree(baby.tree)
|
420 |
oldest = argmin([pop.members[member].birth for member=1:pop.n])
|
|
|
9 |
const unaops = [sin, cos, exp]
|
10 |
##########################
|
11 |
|
12 |
+
# How many equations to search when replacing
|
13 |
+
const ns=10;
|
14 |
+
|
15 |
const nvar = 5;
|
16 |
# Here is the function we want to learn (x2^2 + cos(x3) + 5)
|
17 |
#
|
18 |
##########################
|
19 |
# # Dataset to learn
|
20 |
+
const X = randn(100, nvar)*2
|
21 |
+
const y = ((cx,)->cx^2).(X[:, 2]) + cos.(X[:, 3])
|
22 |
##########################
|
23 |
|
24 |
##################
|
25 |
# Hyperparameters
|
26 |
# How much to punish complexity
|
27 |
+
const parsimony = 1e-3
|
28 |
# How much to scale temperature by (T between 0 and 1)
|
29 |
+
const alpha = 100.0
|
30 |
const maxsize = 20
|
31 |
##################
|
32 |
|
|
|
318 |
prev = deepcopy(tree)
|
319 |
|
320 |
mutationChoice = rand()
|
321 |
+
weights = [8, 1, 1, 1, 2]
|
322 |
weights /= sum(weights)
|
323 |
cweights = cumsum(weights)
|
324 |
n = countNodes(tree)
|
|
|
331 |
tree = appendRandomOp(tree)
|
332 |
elseif mutationChoice < cweights[4]
|
333 |
tree = deleteRandomOp(tree)
|
334 |
+
else
|
335 |
+
tree = tree
|
336 |
end
|
337 |
|
338 |
try
|
|
|
389 |
|
390 |
# Sample 10 random members of the population, and make a new one
|
391 |
function samplePop(pop::Population)::Population
|
392 |
+
idx = rand(1:pop.n, ns)
|
393 |
return Population(pop.members[idx])#Population(deepcopy(pop.members[idx]))
|
394 |
end
|
395 |
|
|
|
419 |
# Pass through the population several times, replacing the oldest
|
420 |
# with the fittest of a small subsample
|
421 |
function regEvolCycle(pop::Population, T::Float64)::Population
|
422 |
+
for i=1:Int(pop.n/ns)
|
423 |
baby = iterateSample(pop, T)
|
424 |
#printTree(baby.tree)
|
425 |
oldest = argmin([pop.members[member].birth for member=1:pop.n])
|
paralleleureqa.jl
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
include("eureqa.jl")
|
2 |
|
3 |
-
println("Lets try to learn (x2^2 + cos(x3)
|
4 |
const nthreads = Threads.nthreads()
|
5 |
println("Running with $nthreads threads")
|
6 |
-
const npop =
|
7 |
const annealing = true
|
8 |
-
const niterations =
|
9 |
-
const ncyclesperiteration =
|
10 |
|
11 |
# Generate random initial populations
|
12 |
allPops = [Population(npop, 3) for j=1:nthreads]
|
|
|
1 |
include("eureqa.jl")
|
2 |
|
3 |
+
println("Lets try to learn (x2^2 + cos(x3)) using regularized evolution from scratch")
|
4 |
const nthreads = Threads.nthreads()
|
5 |
println("Running with $nthreads threads")
|
6 |
+
const npop = 1000
|
7 |
const annealing = true
|
8 |
+
const niterations = 100
|
9 |
+
const ncyclesperiteration = 30000
|
10 |
|
11 |
# Generate random initial populations
|
12 |
allPops = [Population(npop, 3) for j=1:nthreads]
|