Spaces:
Running
Running
MilesCranmer
commited on
Update colab notebook
Browse files- examples/pysr_demo.ipynb +13 -102
examples/pysr_demo.ipynb
CHANGED
@@ -15,68 +15,9 @@
|
|
15 |
"id": "tQ1r1bbb0yBv"
|
16 |
},
|
17 |
"source": [
|
18 |
-
"\n",
|
19 |
"## Instructions\n",
|
20 |
"1. Work on a copy of this notebook: _File_ > _Save a copy in Drive_ (you will need a Google account).\n",
|
21 |
-
"2. (Optional) If you would like to do the deep learning component of this tutorial, turn on the GPU with Edit->Notebook settings->Hardware accelerator->GPU\n"
|
22 |
-
"3. Execute the following cell (click on it and press Ctrl+Enter) to install Julia. This may take a minute or so.\n",
|
23 |
-
"4. Continue to the next section.\n",
|
24 |
-
"\n",
|
25 |
-
"_Notes_:\n",
|
26 |
-
"* If your Colab Runtime gets reset (e.g., due to inactivity), repeat steps 3, 4.\n",
|
27 |
-
"* After installation, if you want to change the Julia version or activate/deactivate the GPU, you will need to reset the Runtime: _Runtime_ > _Delete and disconnect runtime_ and repeat steps 2-4."
|
28 |
-
]
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"cell_type": "markdown",
|
32 |
-
"metadata": {
|
33 |
-
"id": "COndi88gbDgO"
|
34 |
-
},
|
35 |
-
"source": [
|
36 |
-
"**Run the following code to install Julia**"
|
37 |
-
]
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"cell_type": "code",
|
41 |
-
"execution_count": null,
|
42 |
-
"metadata": {
|
43 |
-
"colab": {
|
44 |
-
"base_uri": "https://localhost:8080/"
|
45 |
-
},
|
46 |
-
"id": "GIeFXS0F0zww",
|
47 |
-
"outputId": "5399ed75-f77f-47c5-e53b-4b2f231f2839"
|
48 |
-
},
|
49 |
-
"outputs": [],
|
50 |
-
"source": [
|
51 |
-
"!curl -fsSL https://install.julialang.org | sh -s -- -y --default-channel 1.10"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "code",
|
56 |
-
"execution_count": null,
|
57 |
-
"metadata": {
|
58 |
-
"colab": {
|
59 |
-
"base_uri": "https://localhost:8080/"
|
60 |
-
},
|
61 |
-
"id": "Iu9X-Y-YNmwM",
|
62 |
-
"outputId": "ee14af65-043a-4ad6-efa0-3cdcc48a4eb8"
|
63 |
-
},
|
64 |
-
"outputs": [],
|
65 |
-
"source": [
|
66 |
-
"# Make julia available on PATH:\n",
|
67 |
-
"!ln -s $HOME/.juliaup/bin/julia /usr/local/bin/julia\n",
|
68 |
-
"\n",
|
69 |
-
"# Test it works:\n",
|
70 |
-
"!julia --version"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "markdown",
|
75 |
-
"metadata": {
|
76 |
-
"id": "ORv1c6xvbDgV"
|
77 |
-
},
|
78 |
-
"source": [
|
79 |
-
"Install PySR"
|
80 |
]
|
81 |
},
|
82 |
{
|
@@ -91,36 +32,23 @@
|
|
91 |
},
|
92 |
"outputs": [],
|
93 |
"source": [
|
94 |
-
"!pip install
|
95 |
]
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "markdown",
|
99 |
-
"metadata": {
|
100 |
-
"id": "etTMEV0wDqld"
|
101 |
-
},
|
102 |
"source": [
|
103 |
-
"
|
104 |
]
|
105 |
},
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
"execution_count": null,
|
109 |
-
"metadata": {
|
110 |
-
"id": "j666aOI8xWF_"
|
111 |
-
},
|
112 |
"outputs": [],
|
113 |
"source": [
|
114 |
-
"
|
115 |
-
" from pysr.julia_helpers import init_julia\n",
|
116 |
-
" from julia.tools import redirect_output_streams\n",
|
117 |
-
"\n",
|
118 |
-
" julia_kwargs = dict(optimize=3, threads=\"auto\", compiled_modules=False)\n",
|
119 |
-
" init_julia(julia_kwargs=julia_kwargs)\n",
|
120 |
-
" redirect_output_streams()\n",
|
121 |
-
"\n",
|
122 |
-
"\n",
|
123 |
-
"init_colab_printing()"
|
124 |
]
|
125 |
},
|
126 |
{
|
@@ -129,7 +57,7 @@
|
|
129 |
"id": "qeCPKd9wldEK"
|
130 |
},
|
131 |
"source": [
|
132 |
-
"Now, let's import
|
133 |
]
|
134 |
},
|
135 |
{
|
@@ -815,26 +743,7 @@
|
|
815 |
"where $p_i$ is the $i$th prime number, and $x$ is the input feature.\n",
|
816 |
"\n",
|
817 |
"Let's see if we can discover this using\n",
|
818 |
-
"the [Primes.jl](https://github.com/JuliaMath/Primes.jl) package
|
819 |
-
"\n",
|
820 |
-
"First, let's get the Julia backend\n",
|
821 |
-
"Here, we might choose to manually specify unlimited threads, `-O3`,\n",
|
822 |
-
"and `compile_modules=False`, although this will only propagate if Julia has not yet started:"
|
823 |
-
]
|
824 |
-
},
|
825 |
-
{
|
826 |
-
"cell_type": "code",
|
827 |
-
"execution_count": null,
|
828 |
-
"metadata": {
|
829 |
-
"id": "yUC4BMuHG-KN"
|
830 |
-
},
|
831 |
-
"outputs": [],
|
832 |
-
"source": [
|
833 |
-
"import pysr\n",
|
834 |
-
"\n",
|
835 |
-
"jl = pysr.julia_helpers.init_julia(\n",
|
836 |
-
" julia_kwargs=dict(optimize=3, threads=\"auto\", compiled_modules=False)\n",
|
837 |
-
")"
|
838 |
]
|
839 |
},
|
840 |
{
|
@@ -859,7 +768,9 @@
|
|
859 |
},
|
860 |
"outputs": [],
|
861 |
"source": [
|
862 |
-
"jl
|
|
|
|
|
863 |
" \"\"\"\n",
|
864 |
"import Pkg\n",
|
865 |
"Pkg.add(\"Primes\")\n",
|
@@ -885,7 +796,7 @@
|
|
885 |
},
|
886 |
"outputs": [],
|
887 |
"source": [
|
888 |
-
"jl.
|
889 |
]
|
890 |
},
|
891 |
{
|
@@ -906,7 +817,7 @@
|
|
906 |
},
|
907 |
"outputs": [],
|
908 |
"source": [
|
909 |
-
"jl.
|
910 |
" \"\"\"\n",
|
911 |
"function p(i::T) where T\n",
|
912 |
" if 0.5 < i < 1000\n",
|
|
|
15 |
"id": "tQ1r1bbb0yBv"
|
16 |
},
|
17 |
"source": [
|
|
|
18 |
"## Instructions\n",
|
19 |
"1. Work on a copy of this notebook: _File_ > _Save a copy in Drive_ (you will need a Google account).\n",
|
20 |
+
"2. (Optional) If you would like to do the deep learning component of this tutorial, turn on the GPU with Edit->Notebook settings->Hardware accelerator->GPU\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
]
|
22 |
},
|
23 |
{
|
|
|
32 |
},
|
33 |
"outputs": [],
|
34 |
"source": [
|
35 |
+
"!pip install -U pysr"
|
36 |
]
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "markdown",
|
40 |
+
"metadata": {},
|
|
|
|
|
41 |
"source": [
|
42 |
+
"Julia and Julia dependencies are installed at first import:"
|
43 |
]
|
44 |
},
|
45 |
{
|
46 |
"cell_type": "code",
|
47 |
"execution_count": null,
|
48 |
+
"metadata": {},
|
|
|
|
|
49 |
"outputs": [],
|
50 |
"source": [
|
51 |
+
"import pysr"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
]
|
53 |
},
|
54 |
{
|
|
|
57 |
"id": "qeCPKd9wldEK"
|
58 |
},
|
59 |
"source": [
|
60 |
+
"Now, let's import everything else as well as the PySRRegressor:\n"
|
61 |
]
|
62 |
},
|
63 |
{
|
|
|
743 |
"where $p_i$ is the $i$th prime number, and $x$ is the input feature.\n",
|
744 |
"\n",
|
745 |
"Let's see if we can discover this using\n",
|
746 |
+
"the [Primes.jl](https://github.com/JuliaMath/Primes.jl) package."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
747 |
]
|
748 |
},
|
749 |
{
|
|
|
768 |
},
|
769 |
"outputs": [],
|
770 |
"source": [
|
771 |
+
"from pysr import jl\n",
|
772 |
+
"\n",
|
773 |
+
"jl.seval(\n",
|
774 |
" \"\"\"\n",
|
775 |
"import Pkg\n",
|
776 |
"Pkg.add(\"Primes\")\n",
|
|
|
796 |
},
|
797 |
"outputs": [],
|
798 |
"source": [
|
799 |
+
"jl.seval(\"import Primes\")"
|
800 |
]
|
801 |
},
|
802 |
{
|
|
|
817 |
},
|
818 |
"outputs": [],
|
819 |
"source": [
|
820 |
+
"jl.seval(\n",
|
821 |
" \"\"\"\n",
|
822 |
"function p(i::T) where T\n",
|
823 |
" if 0.5 < i < 1000\n",
|