MilesCranmer commited on
Commit
d90120f
·
1 Parent(s): a1e153e

Fix formatting warnings

Browse files
docs/api-advanced.md CHANGED
@@ -1,6 +1,7 @@
1
  # Internal Reference
2
 
3
  ## Julia Interface
 
4
  ::: pysr.julia_helpers
5
  options:
6
  members:
@@ -34,4 +35,4 @@
34
  options:
35
  members:
36
  - sympy2torch
37
- heading_level: 3
 
1
  # Internal Reference
2
 
3
  ## Julia Interface
4
+
5
  ::: pysr.julia_helpers
6
  options:
7
  members:
 
35
  options:
36
  members:
37
  - sympy2torch
38
+ heading_level: 3
docs/api.md CHANGED
@@ -13,4 +13,4 @@
13
  - latex_table
14
  - refresh
15
  show_root_members_full_path: true
16
- heading_level: 2
 
13
  - latex_table
14
  - refresh
15
  show_root_members_full_path: true
16
+ heading_level: 2
docs/examples.md CHANGED
@@ -1,16 +1,15 @@
1
  # Toy Examples with Code
2
 
3
- ### Preamble
4
 
5
  ```python
6
  import numpy as np
7
  from pysr import *
8
  ```
9
 
10
-
11
  ## 1. Simple search
12
 
13
- Here's a simple example where we
14
  find the expression `2 cos(x3) + x0^2 - 2`.
15
 
16
  ```python
@@ -40,6 +39,7 @@ print(model)
40
 
41
  Here, we do the same thing, but with multiple expressions at once,
42
  each requiring a different feature.
 
43
  ```python
44
  X = 2 * np.random.randn(100, 5)
45
  y = 1 / X[:, [0, 1, 2]]
@@ -60,22 +60,26 @@ function:
60
  model.set_params(extra_sympy_mappings={"inv": lambda x: 1/x})
61
  model.sympy()
62
  ```
 
63
  If you look at the lists of expressions before and after, you will
64
  see that the sympy format now has replaced `inv` with `1/`.
65
  We can again look at the equation chosen:
 
66
  ```python
67
  print(model)
68
  ```
69
 
70
  For now, let's consider the expressions for output 0.
71
  We can see the LaTeX version of this with:
 
72
  ```python
73
  model.latex()[0]
74
  ```
75
- or output 1 with `model.latex()[1]`.
76
 
 
77
 
78
  Let's plot the prediction against the truth:
 
79
  ```python
80
  from matplotlib import pyplot as plt
81
  plt.scatter(y[:, 0], model(X)[:, 0])
@@ -83,9 +87,10 @@ plt.xlabel('Truth')
83
  plt.ylabel('Prediction')
84
  plt.show()
85
  ```
 
86
  Which gives us:
87
 
88
- ![](https://github.com/MilesCranmer/PySR/raw/master/docs/images/example_plot.png)
89
 
90
  ## 5. Feature selection
91
 
@@ -104,12 +109,14 @@ the most important 5 features.
104
 
105
  Here is an example. Let's say we have 30 input features and 300 data points, but only 2
106
  of those features are actually used:
 
107
  ```python
108
  X = np.random.randn(300, 30)
109
  y = X[:, 3]**2 - X[:, 19]**2 + 1.5
110
  ```
111
 
112
  Let's create a model with the feature selection argument set up:
 
113
  ```python
114
  model = PySRRegressor(
115
  binary_operators=["+", "-", "*", "/"],
@@ -117,15 +124,19 @@ model = PySRRegressor(
117
  select_k_features=5,
118
  )
119
  ```
 
120
  Now let's fit this:
 
121
  ```python
122
  model.fit(X, y)
123
  ```
124
 
125
  Before the Julia backend is launched, you can see the string:
126
- ```
 
127
  Using features ['x3', 'x5', 'x7', 'x19', 'x21']
128
  ```
 
129
  which indicates that the feature selection (powered by a gradient-boosting tree)
130
  has successfully selected the relevant two features.
131
 
@@ -152,6 +163,7 @@ set the parameter `denoise=True`. This will fit a Gaussian process (containing a
152
  to the input dataset, and predict new targets (which are assumed to be denoised) from that Gaussian process.
153
 
154
  For example:
 
155
  ```python
156
  X = np.random.randn(100, 5)
157
  noise = np.random.randn(100) * 0.1
@@ -159,6 +171,7 @@ y = np.exp(X[:, 0]) + X[:, 1] + X[:, 2] + noise
159
  ```
160
 
161
  Let's create and fit a model with the denoising argument set up:
 
162
  ```python
163
  model = PySRRegressor(
164
  binary_operators=["+", "-", "*", "/"],
@@ -168,9 +181,10 @@ model = PySRRegressor(
168
  model.fit(X, y)
169
  print(model)
170
  ```
 
171
  If all goes well, you should find that it predicts the correct input equation, without the noise term!
172
 
173
  ## 7. Additional features
174
 
175
  For the many other features available in PySR, please
176
- read the [Options section](options.md).
 
1
  # Toy Examples with Code
2
 
3
+ ## Preamble
4
 
5
  ```python
6
  import numpy as np
7
  from pysr import *
8
  ```
9
 
 
10
  ## 1. Simple search
11
 
12
+ Here's a simple example where we
13
  find the expression `2 cos(x3) + x0^2 - 2`.
14
 
15
  ```python
 
39
 
40
  Here, we do the same thing, but with multiple expressions at once,
41
  each requiring a different feature.
42
+
43
  ```python
44
  X = 2 * np.random.randn(100, 5)
45
  y = 1 / X[:, [0, 1, 2]]
 
60
  model.set_params(extra_sympy_mappings={"inv": lambda x: 1/x})
61
  model.sympy()
62
  ```
63
+
64
  If you look at the lists of expressions before and after, you will
65
  see that the sympy format now has replaced `inv` with `1/`.
66
  We can again look at the equation chosen:
67
+
68
  ```python
69
  print(model)
70
  ```
71
 
72
  For now, let's consider the expressions for output 0.
73
  We can see the LaTeX version of this with:
74
+
75
  ```python
76
  model.latex()[0]
77
  ```
 
78
 
79
+ or output 1 with `model.latex()[1]`.
80
 
81
  Let's plot the prediction against the truth:
82
+
83
  ```python
84
  from matplotlib import pyplot as plt
85
  plt.scatter(y[:, 0], model(X)[:, 0])
 
87
  plt.ylabel('Prediction')
88
  plt.show()
89
  ```
90
+
91
  Which gives us:
92
 
93
+ ![Truth vs Prediction](images/example_plot.png)
94
 
95
  ## 5. Feature selection
96
 
 
109
 
110
  Here is an example. Let's say we have 30 input features and 300 data points, but only 2
111
  of those features are actually used:
112
+
113
  ```python
114
  X = np.random.randn(300, 30)
115
  y = X[:, 3]**2 - X[:, 19]**2 + 1.5
116
  ```
117
 
118
  Let's create a model with the feature selection argument set up:
119
+
120
  ```python
121
  model = PySRRegressor(
122
  binary_operators=["+", "-", "*", "/"],
 
124
  select_k_features=5,
125
  )
126
  ```
127
+
128
  Now let's fit this:
129
+
130
  ```python
131
  model.fit(X, y)
132
  ```
133
 
134
  Before the Julia backend is launched, you can see the string:
135
+
136
+ ```text
137
  Using features ['x3', 'x5', 'x7', 'x19', 'x21']
138
  ```
139
+
140
  which indicates that the feature selection (powered by a gradient-boosting tree)
141
  has successfully selected the relevant two features.
142
 
 
163
  to the input dataset, and predict new targets (which are assumed to be denoised) from that Gaussian process.
164
 
165
  For example:
166
+
167
  ```python
168
  X = np.random.randn(100, 5)
169
  noise = np.random.randn(100) * 0.1
 
171
  ```
172
 
173
  Let's create and fit a model with the denoising argument set up:
174
+
175
  ```python
176
  model = PySRRegressor(
177
  binary_operators=["+", "-", "*", "/"],
 
181
  model.fit(X, y)
182
  print(model)
183
  ```
184
+
185
  If all goes well, you should find that it predicts the correct input equation, without the noise term!
186
 
187
  ## 7. Additional features
188
 
189
  For the many other features available in PySR, please
190
+ read the [Options section](options.md).
docs/generate_papers.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import yaml
2
  from pathlib import Path
3
 
 
1
+ """This script generates the papers.md file from the papers.yml file."""
2
  import yaml
3
  from pathlib import Path
4
 
docs/options.md CHANGED
@@ -43,8 +43,9 @@ the equation selection with the arrow shown in the `pick` column.
43
 
44
  ## Operators
45
 
46
- A list of operators can be found on the operators page.
47
  One can define custom operators in Julia by passing a string:
 
48
  ```python
49
  PySRRegressor(niterations=100,
50
  binary_operators=["mult", "plus", "special(x, y) = x^2 + y"],
@@ -107,6 +108,7 @@ on each core.
107
  Here, we assign weights to each row of data
108
  using inverse uncertainty squared. We also use 10 processes for the search
109
  instead of the default.
 
110
  ```python
111
  sigma = ...
112
  weights = 1/sigma**2
@@ -126,8 +128,8 @@ One can warm up the maxsize from a small number to encourage
126
  PySR to start simple, by using the `warmupMaxsize` argument.
127
  This specifies that maxsize increases every `warmupMaxsize`.
128
 
129
-
130
  ## Batching
 
131
  One can turn on mini-batching, with the `batching` flag,
132
  and control the batch size with `batch_size`. This will make
133
  evolution faster for large datasets. Equations are still evaluated
@@ -151,11 +153,11 @@ There is a "maxsize" parameter to PySR, but there is also an operator-level
151
  constraints={'pow': (-1, 1), 'mult': (3, 3), 'cos': 5}
152
  ```
153
 
154
- What this says is that: a power law x^y can have an expression of arbitrary (-1) complexity in the x, but only complexity 1 (e.g., a constant or variable) in the y. So (x0 + 3)^5.5 is allowed, but 5.5^(x0 + 3) is not.
155
  I find this helps a lot for getting more interpretable equations.
156
  The other terms say that each multiplication can only have sub-expressions
157
- of up to complexity 3 (e.g., 5.0 + x2) in each side, and cosine can only operate on
158
- expressions of complexity 5 (e.g., 5.0 + x2 exp(x3)).
159
 
160
  ## Custom complexity
161
 
@@ -182,12 +184,12 @@ You can optionally pass a pandas dataframe to the callable function,
182
  if you called `.fit` on a pandas dataframe as well.
183
 
184
  There are also some helper functions for doing this quickly.
 
185
  - `model.latex()` will generate a TeX formatted output of your equation.
186
  - `model.sympy()` will return the SymPy representation.
187
  - `model.jax()` will return a callable JAX function combined with parameters (see below)
188
  - `model.pytorch()` will return a PyTorch model (see below).
189
 
190
-
191
  ## Exporting to numpy, pytorch, and jax
192
 
193
  By default, the dataframe of equations will contain columns
@@ -214,21 +216,25 @@ a PyTorch module which runs the equation, using PyTorch functions,
214
  over `X` (as a PyTorch tensor). This is differentiable, and the
215
  parameters of this PyTorch module correspond to the learned parameters
216
  in the equation, and are trainable.
 
217
  ```python
218
  torch_model = model.pytorch()
219
  torch_model(X)
220
  ```
 
221
  **Warning: If you are using custom operators, you must define `extra_torch_mappings` or `extra_jax_mappings` (both are `dict` of callables) to provide an equivalent definition of the functions.** (At any time you can set these parameters or any others with `model.set_params`.)
222
 
223
  For JAX, you can equivalently call `model.jax()`
224
  This will return a dictionary containing a `'callable'` (a JAX function),
225
  and `'parameters'` (a list of parameters in the equation).
226
  You can execute this function with:
 
227
  ```python
228
  jax_model = model.jax()
229
  jax_model['callable'](X, jax_model['parameters'])
230
  ```
231
- Since the parameter list is a jax array, this therefore lets you also
 
232
  train the parameters within JAX (and is differentiable).
233
 
234
  ## `loss`
@@ -243,29 +249,40 @@ page for SymbolicRegression.jl.
243
  Here are some additional examples:
244
 
245
  abs(x-y) loss
 
246
  ```python
247
  PySRRegressor(..., loss="f(x, y) = abs(x - y)^1.5")
248
  ```
 
249
  Note that the function name doesn't matter:
 
250
  ```python
251
  PySRRegressor(..., loss="loss(x, y) = abs(x * y)")
252
  ```
 
253
  With weights:
 
254
  ```python
255
  model = PySRRegressor(..., loss="myloss(x, y, w) = w * abs(x - y)")
256
  model.fit(..., weights=weights)
257
  ```
 
258
  Weights can be used in arbitrary ways:
 
259
  ```python
260
  model = PySRRegressor(..., weights=weights, loss="myloss(x, y, w) = abs(x - y)^2/w^2")
261
  model.fit(..., weights=weights)
262
  ```
 
263
  Built-in loss (faster) (see [losses](https://astroautomata.com/SymbolicRegression.jl/dev/losses/)).
264
  This one computes the L3 norm:
 
265
  ```python
266
  PySRRegressor(..., loss="LPDistLoss{3}()")
267
  ```
 
268
  Can also uses these losses for weighted (weighted-average):
 
269
  ```python
270
  model = PySRRegressor(..., weights=weights, loss="LPDistLoss{3}()")
271
  model.fit(..., weights=weights)
@@ -278,12 +295,14 @@ when you call `model.fit`, once before the search starts,
278
  and again after the search finishes. The filename will
279
  have the same base name as the input file, but with a `.pkl` extension.
280
  You can load the saved model state with:
 
281
  ```python
282
  model = PySRRegressor.from_file(pickle_filename)
283
  ```
 
284
  If you have a long-running job and would like to load the model
285
  before completion, you can also do this. In this case, the model
286
  loading will use the `csv` file to load the equations, since the
287
  `csv` file is continually updated during the search. Once
288
  the search completes, the model including its equations will
289
- be saved to the pickle file, overwriting the existing version.
 
43
 
44
  ## Operators
45
 
46
+ A list of operators can be found on the [operators page](operators.md).
47
  One can define custom operators in Julia by passing a string:
48
+
49
  ```python
50
  PySRRegressor(niterations=100,
51
  binary_operators=["mult", "plus", "special(x, y) = x^2 + y"],
 
108
  Here, we assign weights to each row of data
109
  using inverse uncertainty squared. We also use 10 processes for the search
110
  instead of the default.
111
+
112
  ```python
113
  sigma = ...
114
  weights = 1/sigma**2
 
128
  PySR to start simple, by using the `warmupMaxsize` argument.
129
  This specifies that maxsize increases every `warmupMaxsize`.
130
 
 
131
  ## Batching
132
+
133
  One can turn on mini-batching, with the `batching` flag,
134
  and control the batch size with `batch_size`. This will make
135
  evolution faster for large datasets. Equations are still evaluated
 
153
  constraints={'pow': (-1, 1), 'mult': (3, 3), 'cos': 5}
154
  ```
155
 
156
+ What this says is that: a power law $x^y$ can have an expression of arbitrary (-1) complexity in the x, but only complexity 1 (e.g., a constant or variable) in the y. So $(x_0 + 3)^{5.5}$ is allowed, but $5.5^{x_0 + 3}$ is not.
157
  I find this helps a lot for getting more interpretable equations.
158
  The other terms say that each multiplication can only have sub-expressions
159
+ of up to complexity 3 (e.g., $5.0 + x_2$) in each side, and cosine can only operate on
160
+ expressions of complexity 5 (e.g., $5.0 + x_2 exp(x_3)$).
161
 
162
  ## Custom complexity
163
 
 
184
  if you called `.fit` on a pandas dataframe as well.
185
 
186
  There are also some helper functions for doing this quickly.
187
+
188
  - `model.latex()` will generate a TeX formatted output of your equation.
189
  - `model.sympy()` will return the SymPy representation.
190
  - `model.jax()` will return a callable JAX function combined with parameters (see below)
191
  - `model.pytorch()` will return a PyTorch model (see below).
192
 
 
193
  ## Exporting to numpy, pytorch, and jax
194
 
195
  By default, the dataframe of equations will contain columns
 
216
  over `X` (as a PyTorch tensor). This is differentiable, and the
217
  parameters of this PyTorch module correspond to the learned parameters
218
  in the equation, and are trainable.
219
+
220
  ```python
221
  torch_model = model.pytorch()
222
  torch_model(X)
223
  ```
224
+
225
  **Warning: If you are using custom operators, you must define `extra_torch_mappings` or `extra_jax_mappings` (both are `dict` of callables) to provide an equivalent definition of the functions.** (At any time you can set these parameters or any others with `model.set_params`.)
226
 
227
  For JAX, you can equivalently call `model.jax()`
228
  This will return a dictionary containing a `'callable'` (a JAX function),
229
  and `'parameters'` (a list of parameters in the equation).
230
  You can execute this function with:
231
+
232
  ```python
233
  jax_model = model.jax()
234
  jax_model['callable'](X, jax_model['parameters'])
235
  ```
236
+
237
+ Since the parameter list is a jax array, this therefore lets you also
238
  train the parameters within JAX (and is differentiable).
239
 
240
  ## `loss`
 
249
  Here are some additional examples:
250
 
251
  abs(x-y) loss
252
+
253
  ```python
254
  PySRRegressor(..., loss="f(x, y) = abs(x - y)^1.5")
255
  ```
256
+
257
  Note that the function name doesn't matter:
258
+
259
  ```python
260
  PySRRegressor(..., loss="loss(x, y) = abs(x * y)")
261
  ```
262
+
263
  With weights:
264
+
265
  ```python
266
  model = PySRRegressor(..., loss="myloss(x, y, w) = w * abs(x - y)")
267
  model.fit(..., weights=weights)
268
  ```
269
+
270
  Weights can be used in arbitrary ways:
271
+
272
  ```python
273
  model = PySRRegressor(..., weights=weights, loss="myloss(x, y, w) = abs(x - y)^2/w^2")
274
  model.fit(..., weights=weights)
275
  ```
276
+
277
  Built-in loss (faster) (see [losses](https://astroautomata.com/SymbolicRegression.jl/dev/losses/)).
278
  This one computes the L3 norm:
279
+
280
  ```python
281
  PySRRegressor(..., loss="LPDistLoss{3}()")
282
  ```
283
+
284
  Can also uses these losses for weighted (weighted-average):
285
+
286
  ```python
287
  model = PySRRegressor(..., weights=weights, loss="LPDistLoss{3}()")
288
  model.fit(..., weights=weights)
 
295
  and again after the search finishes. The filename will
296
  have the same base name as the input file, but with a `.pkl` extension.
297
  You can load the saved model state with:
298
+
299
  ```python
300
  model = PySRRegressor.from_file(pickle_filename)
301
  ```
302
+
303
  If you have a long-running job and would like to load the model
304
  before completion, you can also do this. In this case, the model
305
  loading will use the `csv` file to load the equations, since the
306
  `csv` file is continually updated during the search. Once
307
  the search completes, the model including its equations will
308
+ be saved to the pickle file, overwriting the existing version.