Spaces:
Running
Running
MilesCranmer
commited on
Commit
•
dd65136
1
Parent(s):
e1cf25c
Refactor app
Browse files- gui/app.py +114 -83
gui/app.py
CHANGED
@@ -110,112 +110,143 @@ model.fit(X, y)"""
|
|
110 |
return df, msg
|
111 |
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
def main():
|
|
|
114 |
with gr.Blocks() as demo:
|
115 |
with gr.Row():
|
116 |
with gr.Column():
|
117 |
with gr.Row():
|
118 |
-
|
119 |
-
# Plot of the example data:
|
120 |
-
example_plot = gr.ScatterPlot(
|
121 |
-
x="x",
|
122 |
-
y="y",
|
123 |
-
tooltip=["x", "y"],
|
124 |
-
x_lim=[0, 10],
|
125 |
-
y_lim=[-5, 5],
|
126 |
-
width=350,
|
127 |
-
height=300,
|
128 |
-
)
|
129 |
-
test_equation = gr.Radio(
|
130 |
-
test_equations,
|
131 |
-
value=test_equations[0],
|
132 |
-
label="Test Equation"
|
133 |
-
)
|
134 |
-
num_points = gr.Slider(
|
135 |
-
minimum=10,
|
136 |
-
maximum=1000,
|
137 |
-
value=100,
|
138 |
-
label="Number of Data Points",
|
139 |
-
step=1,
|
140 |
-
)
|
141 |
-
noise_level = gr.Slider(
|
142 |
-
minimum=0, maximum=1, value=0.1, label="Noise Level"
|
143 |
-
)
|
144 |
-
with gr.Tab("Upload Data"):
|
145 |
-
file_input = gr.File(label="Upload a CSV File")
|
146 |
-
gr.Markdown("Upload a CSV file with the data to fit. The last column will be used as the target variable.")
|
147 |
with gr.Row():
|
148 |
-
|
149 |
-
choices=["+", "-", "*", "/", "^"],
|
150 |
-
label="Binary Operators",
|
151 |
-
value=["+", "-", "*", "/"],
|
152 |
-
)
|
153 |
-
unary_operators = gr.CheckboxGroup(
|
154 |
-
choices=[
|
155 |
-
"sin",
|
156 |
-
"cos",
|
157 |
-
"exp",
|
158 |
-
"log",
|
159 |
-
"square",
|
160 |
-
"cube",
|
161 |
-
"sqrt",
|
162 |
-
"abs",
|
163 |
-
"tan",
|
164 |
-
],
|
165 |
-
label="Unary Operators",
|
166 |
-
value=[],
|
167 |
-
)
|
168 |
-
niterations = gr.Slider(
|
169 |
-
minimum=1,
|
170 |
-
maximum=1000,
|
171 |
-
value=40,
|
172 |
-
label="Number of Iterations",
|
173 |
-
step=1,
|
174 |
-
)
|
175 |
-
maxsize = gr.Slider(
|
176 |
-
minimum=7,
|
177 |
-
maximum=35,
|
178 |
-
value=20,
|
179 |
-
label="Maximum Complexity",
|
180 |
-
step=1,
|
181 |
-
)
|
182 |
-
force_run = gr.Checkbox(
|
183 |
-
value=False,
|
184 |
-
label="Ignore Warnings",
|
185 |
-
)
|
186 |
|
187 |
with gr.Column():
|
188 |
with gr.Row():
|
189 |
-
df = gr.Dataframe(
|
190 |
headers=["Equation", "Loss", "Complexity"],
|
191 |
datatype=["str", "number", "number"],
|
192 |
)
|
193 |
-
error_log = gr.Textbox(label="Error Log")
|
194 |
with gr.Row():
|
195 |
-
|
196 |
|
197 |
-
|
198 |
greet,
|
199 |
inputs=[
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
209 |
],
|
210 |
-
outputs=[df, error_log],
|
211 |
)
|
212 |
|
213 |
# Any update to the equation choice will trigger a replot:
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
demo.launch()
|
218 |
|
|
|
219 |
def replot(test_equation, num_points, noise_level):
|
220 |
X, y = generate_data(test_equation, num_points, noise_level)
|
221 |
df = pd.DataFrame({"x": X["x"], "y": y})
|
|
|
110 |
return df, msg
|
111 |
|
112 |
|
113 |
+
def _data_layout():
|
114 |
+
with gr.Tab("Example Data"):
|
115 |
+
# Plot of the example data:
|
116 |
+
example_plot = gr.ScatterPlot(
|
117 |
+
x="x",
|
118 |
+
y="y",
|
119 |
+
tooltip=["x", "y"],
|
120 |
+
x_lim=[0, 10],
|
121 |
+
y_lim=[-5, 5],
|
122 |
+
width=350,
|
123 |
+
height=300,
|
124 |
+
)
|
125 |
+
test_equation = gr.Radio(
|
126 |
+
test_equations, value=test_equations[0], label="Test Equation"
|
127 |
+
)
|
128 |
+
num_points = gr.Slider(
|
129 |
+
minimum=10,
|
130 |
+
maximum=1000,
|
131 |
+
value=100,
|
132 |
+
label="Number of Data Points",
|
133 |
+
step=1,
|
134 |
+
)
|
135 |
+
noise_level = gr.Slider(minimum=0, maximum=1, value=0.1, label="Noise Level")
|
136 |
+
with gr.Tab("Upload Data"):
|
137 |
+
file_input = gr.File(label="Upload a CSV File")
|
138 |
+
gr.Markdown(
|
139 |
+
"Upload a CSV file with the data to fit. The last column will be used as the target variable."
|
140 |
+
)
|
141 |
+
|
142 |
+
return dict(
|
143 |
+
file_input=file_input,
|
144 |
+
test_equation=test_equation,
|
145 |
+
num_points=num_points,
|
146 |
+
noise_level=noise_level,
|
147 |
+
example_plot=example_plot,
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
def _settings_layout():
|
152 |
+
binary_operators = gr.CheckboxGroup(
|
153 |
+
choices=["+", "-", "*", "/", "^"],
|
154 |
+
label="Binary Operators",
|
155 |
+
value=["+", "-", "*", "/"],
|
156 |
+
)
|
157 |
+
unary_operators = gr.CheckboxGroup(
|
158 |
+
choices=[
|
159 |
+
"sin",
|
160 |
+
"cos",
|
161 |
+
"exp",
|
162 |
+
"log",
|
163 |
+
"square",
|
164 |
+
"cube",
|
165 |
+
"sqrt",
|
166 |
+
"abs",
|
167 |
+
"tan",
|
168 |
+
],
|
169 |
+
label="Unary Operators",
|
170 |
+
value=[],
|
171 |
+
)
|
172 |
+
niterations = gr.Slider(
|
173 |
+
minimum=1,
|
174 |
+
maximum=1000,
|
175 |
+
value=40,
|
176 |
+
label="Number of Iterations",
|
177 |
+
step=1,
|
178 |
+
)
|
179 |
+
maxsize = gr.Slider(
|
180 |
+
minimum=7,
|
181 |
+
maximum=35,
|
182 |
+
value=20,
|
183 |
+
label="Maximum Complexity",
|
184 |
+
step=1,
|
185 |
+
)
|
186 |
+
force_run = gr.Checkbox(
|
187 |
+
value=False,
|
188 |
+
label="Ignore Warnings",
|
189 |
+
)
|
190 |
+
return dict(
|
191 |
+
binary_operators=binary_operators,
|
192 |
+
unary_operators=unary_operators,
|
193 |
+
niterations=niterations,
|
194 |
+
maxsize=maxsize,
|
195 |
+
force_run=force_run,
|
196 |
+
)
|
197 |
+
|
198 |
+
|
199 |
def main():
|
200 |
+
blocks = {}
|
201 |
with gr.Blocks() as demo:
|
202 |
with gr.Row():
|
203 |
with gr.Column():
|
204 |
with gr.Row():
|
205 |
+
blocks = {**blocks, **_data_layout()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
with gr.Row():
|
207 |
+
blocks = {**blocks, **_settings_layout()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
with gr.Column():
|
210 |
with gr.Row():
|
211 |
+
blocks["df"] = gr.Dataframe(
|
212 |
headers=["Equation", "Loss", "Complexity"],
|
213 |
datatype=["str", "number", "number"],
|
214 |
)
|
215 |
+
blocks["error_log"] = gr.Textbox(label="Error Log")
|
216 |
with gr.Row():
|
217 |
+
blocks["run"] = gr.Button()
|
218 |
|
219 |
+
blocks["run"].click(
|
220 |
greet,
|
221 |
inputs=[
|
222 |
+
blocks[k]
|
223 |
+
for k in [
|
224 |
+
"file_input",
|
225 |
+
"test_equation",
|
226 |
+
"num_points",
|
227 |
+
"noise_level",
|
228 |
+
"niterations",
|
229 |
+
"maxsize",
|
230 |
+
"binary_operators",
|
231 |
+
"unary_operators",
|
232 |
+
"force_run",
|
233 |
+
]
|
234 |
],
|
235 |
+
outputs=[blocks["df"], blocks["error_log"]],
|
236 |
)
|
237 |
|
238 |
# Any update to the equation choice will trigger a replot:
|
239 |
+
eqn_components = [
|
240 |
+
blocks["test_equation"],
|
241 |
+
blocks["num_points"],
|
242 |
+
blocks["noise_level"],
|
243 |
+
]
|
244 |
+
for eqn_component in eqn_components:
|
245 |
+
eqn_component.change(replot, eqn_components, blocks["example_plot"])
|
246 |
|
247 |
demo.launch()
|
248 |
|
249 |
+
|
250 |
def replot(test_equation, num_points, noise_level):
|
251 |
X, y = generate_data(test_equation, num_points, noise_level)
|
252 |
df = pd.DataFrame({"x": X["x"], "y": y})
|