Spaces:
Running
Running
MilesCranmer
commited on
Commit
•
ed35c4e
1
Parent(s):
1369d9f
Make pipeline tests reproducibile
Browse files- test/test.py +20 -21
test/test.py
CHANGED
@@ -24,8 +24,8 @@ class TestPipeline(unittest.TestCase):
|
|
24 |
niterations=default_niterations * 2,
|
25 |
populations=default_populations * 2,
|
26 |
)
|
27 |
-
np.random.
|
28 |
-
self.X =
|
29 |
|
30 |
def test_linear_relation(self):
|
31 |
y = self.X[:, 0]
|
@@ -73,7 +73,7 @@ class TestPipeline(unittest.TestCase):
|
|
73 |
|
74 |
def test_multioutput_weighted_with_callable_temp_equation(self):
|
75 |
y = self.X[:, [0, 1]] ** 2
|
76 |
-
w =
|
77 |
w[w < 0.5] = 0.0
|
78 |
w[w >= 0.5] = 1.0
|
79 |
|
@@ -100,7 +100,7 @@ class TestPipeline(unittest.TestCase):
|
|
100 |
)
|
101 |
|
102 |
def test_empty_operators_single_input_multirun(self):
|
103 |
-
X =
|
104 |
y = X[:, 0] + 3.0
|
105 |
regressor = PySRRegressor(
|
106 |
unary_operators=[],
|
@@ -130,8 +130,7 @@ class TestPipeline(unittest.TestCase):
|
|
130 |
|
131 |
def test_noisy(self):
|
132 |
|
133 |
-
|
134 |
-
y = self.X[:, [0, 1]] ** 2 + np.random.randn(self.X.shape[0], 1) * 0.05
|
135 |
model = PySRRegressor(
|
136 |
# Test that passing a single operator works:
|
137 |
unary_operators="sq(x) = x^2",
|
@@ -146,26 +145,25 @@ class TestPipeline(unittest.TestCase):
|
|
146 |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
|
147 |
|
148 |
def test_pandas_resample(self):
|
149 |
-
np.random.seed(1)
|
150 |
X = pd.DataFrame(
|
151 |
{
|
152 |
-
"T":
|
153 |
-
"x":
|
154 |
-
"unused_feature":
|
155 |
}
|
156 |
)
|
157 |
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
|
158 |
y = true_fn(X)
|
159 |
-
noise =
|
160 |
y = y + noise
|
161 |
# We also test y as a pandas array:
|
162 |
y = pd.Series(y)
|
163 |
# Resampled array is a different order of features:
|
164 |
Xresampled = pd.DataFrame(
|
165 |
{
|
166 |
-
"unused_feature":
|
167 |
-
"x":
|
168 |
-
"T":
|
169 |
}
|
170 |
)
|
171 |
model = PySRRegressor(
|
@@ -185,9 +183,9 @@ class TestPipeline(unittest.TestCase):
|
|
185 |
self.assertListEqual(list(sorted(fn._selection)), [0, 1])
|
186 |
X2 = pd.DataFrame(
|
187 |
{
|
188 |
-
"T":
|
189 |
-
"unused_feature":
|
190 |
-
"x":
|
191 |
}
|
192 |
)
|
193 |
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
|
@@ -218,6 +216,7 @@ class TestBest(unittest.TestCase):
|
|
218 |
self.model.n_features = 2
|
219 |
self.model.refresh()
|
220 |
self.equations = self.model.equations
|
|
|
221 |
|
222 |
def test_best(self):
|
223 |
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
|
@@ -232,7 +231,7 @@ class TestBest(unittest.TestCase):
|
|
232 |
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
|
233 |
|
234 |
def test_best_lambda(self):
|
235 |
-
X =
|
236 |
y = np.cos(X[:, 0]) ** 2
|
237 |
for f in [self.model.predict, self.equations.iloc[-1]["lambda_format"]]:
|
238 |
np.testing.assert_almost_equal(f(X), y, decimal=4)
|
@@ -240,16 +239,16 @@ class TestBest(unittest.TestCase):
|
|
240 |
|
241 |
class TestFeatureSelection(unittest.TestCase):
|
242 |
def setUp(self):
|
243 |
-
np.random.
|
244 |
|
245 |
def test_feature_selection(self):
|
246 |
-
X =
|
247 |
y = X[:, 2] ** 2 + X[:, 3] ** 2
|
248 |
selected = run_feature_selection(X, y, select_k_features=2)
|
249 |
self.assertEqual(sorted(selected), [2, 3])
|
250 |
|
251 |
def test_feature_selection_handler(self):
|
252 |
-
X =
|
253 |
y = X[:, 2] ** 2 + X[:, 3] ** 2
|
254 |
var_names = [f"x{i}" for i in range(5)]
|
255 |
selected_X, selection = _handle_feature_selection(
|
|
|
24 |
niterations=default_niterations * 2,
|
25 |
populations=default_populations * 2,
|
26 |
)
|
27 |
+
self.rstate = np.random.RandomState(0)
|
28 |
+
self.X = self.rstate.randn(100, 5)
|
29 |
|
30 |
def test_linear_relation(self):
|
31 |
y = self.X[:, 0]
|
|
|
73 |
|
74 |
def test_multioutput_weighted_with_callable_temp_equation(self):
|
75 |
y = self.X[:, [0, 1]] ** 2
|
76 |
+
w = self.rstate.rand(*y.shape)
|
77 |
w[w < 0.5] = 0.0
|
78 |
w[w >= 0.5] = 1.0
|
79 |
|
|
|
100 |
)
|
101 |
|
102 |
def test_empty_operators_single_input_multirun(self):
|
103 |
+
X = self.rstate.randn(100, 1)
|
104 |
y = X[:, 0] + 3.0
|
105 |
regressor = PySRRegressor(
|
106 |
unary_operators=[],
|
|
|
130 |
|
131 |
def test_noisy(self):
|
132 |
|
133 |
+
y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05
|
|
|
134 |
model = PySRRegressor(
|
135 |
# Test that passing a single operator works:
|
136 |
unary_operators="sq(x) = x^2",
|
|
|
145 |
self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
|
146 |
|
147 |
def test_pandas_resample(self):
|
|
|
148 |
X = pd.DataFrame(
|
149 |
{
|
150 |
+
"T": self.rstate.randn(500),
|
151 |
+
"x": self.rstate.randn(500),
|
152 |
+
"unused_feature": self.rstate.randn(500),
|
153 |
}
|
154 |
)
|
155 |
true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
|
156 |
y = true_fn(X)
|
157 |
+
noise = self.rstate.randn(500) * 0.01
|
158 |
y = y + noise
|
159 |
# We also test y as a pandas array:
|
160 |
y = pd.Series(y)
|
161 |
# Resampled array is a different order of features:
|
162 |
Xresampled = pd.DataFrame(
|
163 |
{
|
164 |
+
"unused_feature": self.rstate.randn(100),
|
165 |
+
"x": self.rstate.randn(100),
|
166 |
+
"T": self.rstate.randn(100),
|
167 |
}
|
168 |
)
|
169 |
model = PySRRegressor(
|
|
|
183 |
self.assertListEqual(list(sorted(fn._selection)), [0, 1])
|
184 |
X2 = pd.DataFrame(
|
185 |
{
|
186 |
+
"T": self.rstate.randn(100),
|
187 |
+
"unused_feature": self.rstate.randn(100),
|
188 |
+
"x": self.rstate.randn(100),
|
189 |
}
|
190 |
)
|
191 |
self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
|
|
|
216 |
self.model.n_features = 2
|
217 |
self.model.refresh()
|
218 |
self.equations = self.model.equations
|
219 |
+
self.rstate = np.random.RandomState(0)
|
220 |
|
221 |
def test_best(self):
|
222 |
self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)
|
|
|
231 |
self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")
|
232 |
|
233 |
def test_best_lambda(self):
|
234 |
+
X = self.rstate.randn(10, 2)
|
235 |
y = np.cos(X[:, 0]) ** 2
|
236 |
for f in [self.model.predict, self.equations.iloc[-1]["lambda_format"]]:
|
237 |
np.testing.assert_almost_equal(f(X), y, decimal=4)
|
|
|
239 |
|
240 |
class TestFeatureSelection(unittest.TestCase):
|
241 |
def setUp(self):
|
242 |
+
self.rstate = np.random.RandomState(0)
|
243 |
|
244 |
def test_feature_selection(self):
|
245 |
+
X = self.rstate.randn(20000, 5)
|
246 |
y = X[:, 2] ** 2 + X[:, 3] ** 2
|
247 |
selected = run_feature_selection(X, y, select_k_features=2)
|
248 |
self.assertEqual(sorted(selected), [2, 3])
|
249 |
|
250 |
def test_feature_selection_handler(self):
|
251 |
+
X = self.rstate.randn(20000, 5)
|
252 |
y = X[:, 2] ** 2 + X[:, 3] ** 2
|
253 |
var_names = [f"x{i}" for i in range(5)]
|
254 |
selected_X, selection = _handle_feature_selection(
|