Spaces:
Running
Running
MilesCranmer
commited on
Commit
•
fea9443
1
Parent(s):
bb76c1f
Plotting of pareto front
Browse files- gui/app.py +94 -32
gui/app.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import pandas as pd
|
|
|
4 |
import multiprocessing as mp
|
|
|
|
|
5 |
import tempfile
|
6 |
-
from typing import Optional
|
|
|
7 |
|
8 |
empty_df = pd.DataFrame(
|
9 |
{
|
@@ -18,7 +23,7 @@ test_equations = [
|
|
18 |
]
|
19 |
|
20 |
|
21 |
-
def generate_data(s: str, num_points: int, noise_level: float):
|
22 |
x = np.linspace(0, 10, num_points)
|
23 |
for (k, v) in {
|
24 |
"sin": "np.sin",
|
@@ -30,7 +35,8 @@ def generate_data(s: str, num_points: int, noise_level: float):
|
|
30 |
}.items():
|
31 |
s = s.replace(k, v)
|
32 |
y = eval(s)
|
33 |
-
|
|
|
34 |
y_noisy = y + noise
|
35 |
return pd.DataFrame({"x": x}), y_noisy
|
36 |
|
@@ -41,6 +47,7 @@ def _greet_dispatch(
|
|
41 |
test_equation,
|
42 |
num_points,
|
43 |
noise_level,
|
|
|
44 |
niterations,
|
45 |
maxsize,
|
46 |
binary_operators,
|
@@ -74,32 +81,56 @@ def _greet_dispatch(
|
|
74 |
y = np.array(df[col_to_fit])
|
75 |
X = df.drop([col_to_fit], axis=1)
|
76 |
else:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
def greet(
|
101 |
*,
|
102 |
-
queue: mp.Queue,
|
103 |
X,
|
104 |
y,
|
105 |
niterations: int,
|
@@ -107,6 +138,7 @@ def greet(
|
|
107 |
binary_operators: list,
|
108 |
unary_operators: list,
|
109 |
seed: int,
|
|
|
110 |
):
|
111 |
import pysr
|
112 |
|
@@ -121,13 +153,10 @@ def greet(
|
|
121 |
procs=0,
|
122 |
deterministic=True,
|
123 |
random_state=seed,
|
|
|
124 |
)
|
125 |
model.fit(X, y)
|
126 |
|
127 |
-
df = model.equations_[["complexity", "loss", "equation"]]
|
128 |
-
# Convert all columns to string type:
|
129 |
-
queue.put(df)
|
130 |
-
|
131 |
return 0
|
132 |
|
133 |
|
@@ -154,6 +183,7 @@ def _data_layout():
|
|
154 |
step=1,
|
155 |
)
|
156 |
noise_level = gr.Slider(minimum=0, maximum=1, value=0.1, label="Noise Level")
|
|
|
157 |
with gr.Tab("Upload Data"):
|
158 |
file_input = gr.File(label="Upload a CSV File")
|
159 |
gr.Markdown(
|
@@ -165,6 +195,7 @@ def _data_layout():
|
|
165 |
test_equation=test_equation,
|
166 |
num_points=num_points,
|
167 |
noise_level=noise_level,
|
|
|
168 |
example_plot=example_plot,
|
169 |
)
|
170 |
|
@@ -233,6 +264,7 @@ def main():
|
|
233 |
blocks = {**blocks, **_settings_layout()}
|
234 |
|
235 |
with gr.Column():
|
|
|
236 |
blocks["df"] = gr.Dataframe(
|
237 |
headers=["complexity", "loss", "equation"],
|
238 |
datatype=["number", "number", "str"],
|
@@ -249,6 +281,7 @@ def main():
|
|
249 |
"test_equation",
|
250 |
"num_points",
|
251 |
"noise_level",
|
|
|
252 |
"niterations",
|
253 |
"maxsize",
|
254 |
"binary_operators",
|
@@ -256,7 +289,7 @@ def main():
|
|
256 |
"seed",
|
257 |
]
|
258 |
],
|
259 |
-
outputs=
|
260 |
)
|
261 |
|
262 |
# Any update to the equation choice will trigger a replot:
|
@@ -264,18 +297,47 @@ def main():
|
|
264 |
blocks["test_equation"],
|
265 |
blocks["num_points"],
|
266 |
blocks["noise_level"],
|
|
|
267 |
]
|
268 |
for eqn_component in eqn_components:
|
269 |
eqn_component.change(replot, eqn_components, blocks["example_plot"])
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
demo.launch(debug=True)
|
272 |
|
273 |
|
274 |
-
def replot(test_equation, num_points, noise_level):
|
275 |
-
X, y = generate_data(test_equation, num_points, noise_level)
|
276 |
df = pd.DataFrame({"x": X["x"], "y": y})
|
277 |
return df
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
main()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import os
|
4 |
import pandas as pd
|
5 |
+
import time
|
6 |
import multiprocessing as mp
|
7 |
+
from matplotlib import pyplot as plt
|
8 |
+
plt.ioff()
|
9 |
import tempfile
|
10 |
+
from typing import Optional, Union
|
11 |
+
from pathlib import Path
|
12 |
|
13 |
empty_df = pd.DataFrame(
|
14 |
{
|
|
|
23 |
]
|
24 |
|
25 |
|
26 |
+
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
|
27 |
x = np.linspace(0, 10, num_points)
|
28 |
for (k, v) in {
|
29 |
"sin": "np.sin",
|
|
|
35 |
}.items():
|
36 |
s = s.replace(k, v)
|
37 |
y = eval(s)
|
38 |
+
rstate = np.random.RandomState(data_seed)
|
39 |
+
noise = rstate.normal(0, noise_level, y.shape)
|
40 |
y_noisy = y + noise
|
41 |
return pd.DataFrame({"x": x}), y_noisy
|
42 |
|
|
|
47 |
test_equation,
|
48 |
num_points,
|
49 |
noise_level,
|
50 |
+
data_seed,
|
51 |
niterations,
|
52 |
maxsize,
|
53 |
binary_operators,
|
|
|
81 |
y = np.array(df[col_to_fit])
|
82 |
X = df.drop([col_to_fit], axis=1)
|
83 |
else:
|
84 |
+
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
85 |
+
|
86 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
87 |
+
base = Path(tmpdirname)
|
88 |
+
equation_file = base / "hall_of_fame.csv"
|
89 |
+
equation_file_bkup = base / "hall_of_fame.csv.bkup"
|
90 |
+
process = mp.Process(
|
91 |
+
target=greet,
|
92 |
+
kwargs=dict(
|
93 |
+
X=X,
|
94 |
+
y=y,
|
95 |
+
niterations=niterations,
|
96 |
+
maxsize=maxsize,
|
97 |
+
binary_operators=binary_operators,
|
98 |
+
unary_operators=unary_operators,
|
99 |
+
seed=seed,
|
100 |
+
equation_file=equation_file,
|
101 |
+
),
|
102 |
+
)
|
103 |
+
process.start()
|
104 |
+
while process.is_alive():
|
105 |
+
if equation_file_bkup.exists():
|
106 |
+
try:
|
107 |
+
# First, copy the file to a the copy file
|
108 |
+
equation_file_copy = base / "hall_of_fame_copy.csv"
|
109 |
+
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
|
110 |
+
df = pd.read_csv(equation_file_copy)
|
111 |
+
# Ensure it is pareto dominated, with more complex expressions
|
112 |
+
# having higher loss. Otherwise remove those rows.
|
113 |
+
# TODO: Not sure why this occurs; could be the result of a late copy?
|
114 |
+
df.sort_values("Complexity", ascending=True, inplace=True)
|
115 |
+
df.reset_index(inplace=True)
|
116 |
+
bad_idx = []
|
117 |
+
min_loss = None
|
118 |
+
for i in df.index:
|
119 |
+
if min_loss is None or df.loc[i, "Loss"] < min_loss:
|
120 |
+
min_loss = float(df.loc[i, "Loss"])
|
121 |
+
else:
|
122 |
+
bad_idx.append(i)
|
123 |
+
df.drop(index=bad_idx, inplace=True)
|
124 |
+
yield df[["Complexity", "Loss", "Equation"]]
|
125 |
+
except pd.errors.EmptyDataError:
|
126 |
+
pass
|
127 |
+
time.sleep(1)
|
128 |
+
|
129 |
+
process.join()
|
130 |
|
131 |
|
132 |
def greet(
|
133 |
*,
|
|
|
134 |
X,
|
135 |
y,
|
136 |
niterations: int,
|
|
|
138 |
binary_operators: list,
|
139 |
unary_operators: list,
|
140 |
seed: int,
|
141 |
+
equation_file: Union[str, Path],
|
142 |
):
|
143 |
import pysr
|
144 |
|
|
|
153 |
procs=0,
|
154 |
deterministic=True,
|
155 |
random_state=seed,
|
156 |
+
equation_file=equation_file,
|
157 |
)
|
158 |
model.fit(X, y)
|
159 |
|
|
|
|
|
|
|
|
|
160 |
return 0
|
161 |
|
162 |
|
|
|
183 |
step=1,
|
184 |
)
|
185 |
noise_level = gr.Slider(minimum=0, maximum=1, value=0.1, label="Noise Level")
|
186 |
+
data_seed = gr.Number(value=0, label="Random Seed")
|
187 |
with gr.Tab("Upload Data"):
|
188 |
file_input = gr.File(label="Upload a CSV File")
|
189 |
gr.Markdown(
|
|
|
195 |
test_equation=test_equation,
|
196 |
num_points=num_points,
|
197 |
noise_level=noise_level,
|
198 |
+
data_seed=data_seed,
|
199 |
example_plot=example_plot,
|
200 |
)
|
201 |
|
|
|
264 |
blocks = {**blocks, **_settings_layout()}
|
265 |
|
266 |
with gr.Column():
|
267 |
+
blocks["pareto"] = gr.Plot()
|
268 |
blocks["df"] = gr.Dataframe(
|
269 |
headers=["complexity", "loss", "equation"],
|
270 |
datatype=["number", "number", "str"],
|
|
|
281 |
"test_equation",
|
282 |
"num_points",
|
283 |
"noise_level",
|
284 |
+
"data_seed",
|
285 |
"niterations",
|
286 |
"maxsize",
|
287 |
"binary_operators",
|
|
|
289 |
"seed",
|
290 |
]
|
291 |
],
|
292 |
+
outputs=blocks["df"],
|
293 |
)
|
294 |
|
295 |
# Any update to the equation choice will trigger a replot:
|
|
|
297 |
blocks["test_equation"],
|
298 |
blocks["num_points"],
|
299 |
blocks["noise_level"],
|
300 |
+
blocks["data_seed"],
|
301 |
]
|
302 |
for eqn_component in eqn_components:
|
303 |
eqn_component.change(replot, eqn_components, blocks["example_plot"])
|
304 |
|
305 |
+
# Update plot when dataframe is updated:
|
306 |
+
blocks["df"].change(
|
307 |
+
replot_pareto,
|
308 |
+
inputs=[blocks["df"], blocks["maxsize"]],
|
309 |
+
outputs=[blocks["pareto"]],
|
310 |
+
)
|
311 |
+
|
312 |
demo.launch(debug=True)
|
313 |
|
314 |
|
315 |
+
def replot(test_equation, num_points, noise_level, data_seed):
|
316 |
+
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
317 |
df = pd.DataFrame({"x": X["x"], "y": y})
|
318 |
return df
|
319 |
|
320 |
+
def replot_pareto(df, maxsize):
|
321 |
+
# Matplotlib log-log plot of loss vs complexity:
|
322 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
323 |
+
|
324 |
+
ax.set_xlabel('Complexity', fontsize=14)
|
325 |
+
ax.set_ylabel('Loss', fontsize=14)
|
326 |
+
if len(df) == 0 or 'Equation' not in df.columns:
|
327 |
+
return fig
|
328 |
+
|
329 |
+
ax.loglog(df['Complexity'], df['Loss'], marker='o', linestyle='-', color='b')
|
330 |
+
ax.set_xlim(1, maxsize + 1)
|
331 |
+
# Set ylim to next power of 2:
|
332 |
+
ytop = 2 ** (np.ceil(np.log2(df['Loss'].max())))
|
333 |
+
ybottom = 2 ** (np.floor(np.log2(df['Loss'].min() + 1e-20)))
|
334 |
+
ax.set_ylim(ybottom, ytop)
|
335 |
+
ax.grid(True, which="both", ls="--", linewidth=0.5)
|
336 |
+
fig.tight_layout()
|
337 |
+
ax.tick_params(axis='both', which='major', labelsize=12)
|
338 |
+
ax.tick_params(axis='both', which='minor', labelsize=10)
|
339 |
+
|
340 |
+
return fig
|
341 |
|
342 |
if __name__ == "__main__":
|
343 |
main()
|