import gradio as gr import numpy as np import os import pandas as pd import pysr import tempfile from typing import Optional empty_df = pd.DataFrame( { "equation": [], "loss": [], "complexity": [], } ) def greet( file_obj: Optional[tempfile._TemporaryFileWrapper], col_to_fit: str, niterations: int, maxsize: int, binary_operators: list, unary_operators: list, force_run: bool, ): if col_to_fit == "": return ( empty_df, "Please enter a column to predict!", ) if len(binary_operators) == 0 and len(unary_operators) == 0: return ( empty_df, "Please select at least one operator!", ) if file_obj is None: return ( empty_df, "Please upload a CSV file!", ) # Look at some statistics of the file: df = pd.read_csv(file_obj) if len(df) == 0: return ( empty_df, "The file is empty!", ) if len(df.columns) == 1: return ( empty_df, "The file has only one column!", ) if col_to_fit not in df.columns: return ( empty_df, f"The column to predict, {col_to_fit}, is not in the file!" f"I found {df.columns}.", ) if len(df) > 10_000 and not force_run: return ( empty_df, "You have uploaded a file with more than 10,000 rows. " "This will take very long to run. " "Please upload a subsample of the data, " "or check the box 'Ignore Warnings'.", ) y = np.array(df[col_to_fit]) X = df.drop([col_to_fit], axis=1) model = pysr.PySRRegressor( bumper=True, maxsize=maxsize, niterations=niterations, binary_operators=binary_operators, unary_operators=unary_operators, timeout_in_seconds=1000, ) model.fit(X, y) df = model.equations_[["equation", "loss", "complexity"]] # Convert all columns to string type: df = df.astype(str) msg = ( "Success!\n" f"You may run the model locally (faster) with " f"the following parameters:" +f""" model = PySRRegressor( niterations={niterations}, binary_operators={str(binary_operators)}, unary_operators={str(unary_operators)}, maxsize={maxsize}, ) model.fit(X, y)""") df.to_csv("pysr_output.csv", index=False) return df, msg def main(): demo = gr.Interface( fn=greet, description="Symbolic Regression with PySR. Watch search progress by following the logs.", inputs=[ gr.File(label="Upload a CSV File"), gr.Textbox(label="Column to Predict", placeholder="y"), gr.Slider( minimum=1, maximum=1000, value=40, label="Number of Iterations", step=1, ), gr.Slider( minimum=7, maximum=35, value=20, label="Maximum Complexity", step=1, ), gr.CheckboxGroup( choices=["+", "-", "*", "/", "^"], label="Binary Operators", value=["+", "-", "*", "/"], ), gr.CheckboxGroup( choices=[ "sin", "cos", "exp", "log", "square", "cube", "sqrt", "abs", "tan", ], label="Unary Operators", value=[], ), gr.Checkbox( value=False, label="Ignore Warnings", ), ], outputs=[ "dataframe", gr.Textbox(label="Error Log"), ], ) # Add file to the demo: demo.launch() if __name__ == "__main__": main()